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Prologue

Crystal growth is a fascinating field that is more and more needed in almost all walks

of life. Unfortunately, this fact is hardly known. Why? On the one hand, this task is typi-

cally associated with the production of artificial gemstones only (often, when I intro-

duced myself to previously unknown persons, I was asked whether I am able to pro-

duce a diamond or even a “crystal vase”). Indeed, meanwhile relatively small but

perfect diamond crystals can be grown. However, they are nowhere near as interesting

for the gemstone trade as they are for high-power microelectronics. Substrates made of

single crystalline diamond show highest thermal conductivity, enabling an enormous

dissipation of process heat. And so we have already reached one of the most important

application fields of artificial crystals (the “crystal vase” made from glass and, thus,

nothing to do with crystal growth we quickly put aside). Nanocrystals, high-quality epi-

taxial thin films, and bulk crystals are of high importance for micro- and optoelectron-

ics, photonics, computing, communications, energy saving and storage, radiation gener-

ation and detection, medicine, biotechnology, homeland security, and so on.

On the other hand, crystals are usually not recognizable on the exterior of a tech-

nical equipment or device. Mostly, they are small-sized centerpieces of a device or the

basic slice of a circuit or in a process machine entirely covered by protective casing

and conductors. For instance, today each automobile, computer, cell phone, CT scan-

ner, or tool for laser operations is equipped with devices made of various crystalline

pieces. A large charge from them is directly visible as a light-emitting pixel display.

Rarely are bigger make of a crystal in the form of quite large silicon wafers to be

seen, as in solar cells. Or, who knows right away that the huge lenses with a diameter

of 300 mm in lithography systems of ultra-short wavelengths (so-called waver step-

pers) are made from CaF2 single crystals?

However, the most problematic aspect of the general lack of knowledge about sin-

gle crystals and crystal growth proves to be the absence of education and inadequate

media presentation. Usually, artificial monocrystals are treated as of secondary im-

portance within the framework of physics, chemistry, and materials science. Mostly,

their crystallographic and growth principles as well as broad applications are out-

lined in introduction only. Obviously, this has to do with the fact that the mastery of

crystallization and epitaxial processes on highest level as possible requires a pro-

found interdisciplinary knowledge that combines physics, chemistry, mathematics,

crystallography, materials science, electronics, automation, engineering, and so on.

Nowadays elementary and special knowledge of biology and medicine also belong to

it. These facts upgrade the wide field of crystal growth to a challenging quasi-self-

contained interdisciplinary branch of science.

Unfortunately, the current level of related academic education does not meet this

challenge. Even during the last decades, training in this field is decreasing. Looking back

on the international situation at the turn of the century, compared with today, many

more academic departments and research laboratories dealt with the fundamentals, ex-
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periments, and technology developments of crystal growth. At present, there are only

two autarkic institutes for crystal growth in Berlin (Germany) and Kharkiv (Ukraine). Of

course, additionally, numerous excellent institutes of materials science with partial ori-

entation on crystal exist, as in the USA, Japan, China, Switzerland, South Korea, Singa-

pore, and India. However, where and how the young academics having a special knowl-

edge for their needed crystal growth research are educated? I would like to remind the

readers that until the German reunification in two self-dependent departments of crys-

tallography at the universities of Berlin and Leipzig were trained “Diploma Crystallogra-

phers” with comprehensive knowledge on crystal growth and analysis. In addition to the

basic courses of physics, chemistry, and crystallography, the students attended profound

lectures on thermodynamics and kinetics of phase transition, crystal growth fundamen-

tals and technologies, defects, and crystal applications. I by myself lectured for many

decades in Berlin such disciplines and supervised numerous PhD students on crystal

growth. Unfortunately, such goal-oriented education no longer exists. After one of my

popular scientific lectures on crystal growth and application in 2011 in a high school, one

of the enthusiastic pupils asked me “where can I study this fantastic subject?”. Sadly, my

answer was “nowhere. . .”. Today, as anywhere in the world, a young scientist who is

assigned a task on growth and analysis of a new crystal material, nanocrystal or epitax-

ial layer must familiarize themselves in a time-consuming independent study via text-

books and internet data, however, without any seminar-style discussions and practical

trainings. Fortunately, there are some occasionally organized international and national

schools on crystal growth providing over a period of about 1-week fundamental lectures.

Over the years, the high interest and visitor volume at such training courses are the evi-

dence that the demand of specialists contradicts the actual situation of missing academic

education yet. Therefore, it is also clear why according to the statistics and scores of pub-

lication databases even reviews and editions on crystal growth and defect formations

show exceptionally high read rates.

How did it come to such contradictory situations? First, there is a widespread ten-

dency that the fundamentals and technological means of crystallization phenomena

and their control are more or less already solved. Of course, over more than a half cen-

tury of the development of crystal growth technology, most of the important mecha-

nisms have become well understood. But that is not to say that all new challenges and

arising problems are already mastered. For instance, although we understand fully the

conditions under which morphological growth instabilities occur, it is still not possible

to obtain the detailed parameters that permit the production of large, homogeneous

alloy (mixed) single crystals consisting of two more components that would be invalu-

able as tailored substrates. For its future mastery, the crystallization process must be

combined with newly developed automation programs. Further, twinning remains a se-

rious limiter of yield in the growth of single crystals with low stacking fault energy. It

seems to be due to the appearance of facets but we do not exactly understand the deci-

sional origin yet. Then, the optimum growth conditions of high-quality large-sized GaN

crystals, being extraordinary important for optoelectronics and future high-power devi-
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ces, are not yet mastered. Also, the production of reproducible CdTe single crystals as

radiation detectors for medical diagnostics by computer tomography needs still the

minimization of diverse growing-in defect phenomena. The many other examples in-

clude growth of functional materials for electromechanical energy harvesting, mono-

crystals for high-efficiency hydrogen storage, periodically structured crystals for pho-

tonics, and perfect monocrystalline lenses for laser-excited fusion energy. Many further

arguments can be extended to the branches of nanocrystals and epitaxial thin films too.

Another reason of the current public drop in activity levels in crystal growth

study and education is due to the high-tech and strategic character of single crystals

and advanced thin-film configurations. Meanwhile, there are only few remaining

highly developed industrial producers with market leaderships which are increasing

isolate itself, and thus excluded from the public sphere with the aim to ensure the

dominating role of international competition. Actually, the number of speakers from

industry at conferences of crystal growth is significantly reducing. As a result, numer-

ous development problems, especially of technological character, do not make their

way to the outside but are developing further in own R&D laboratories without access

for public academic researchers. In part, this is understandable. However, it does not

solve the question of where these companies draw their highly qualified new employ-

ees? Is it really sufficient to transmit the working knowledge behind the closed doors

only? Taking, for example, the scientific penetration of current related patent publica-

tions (now the almost only allowed communication type of the industry), the precision

of which leaves often much to be desired.

Finally, until now the crystal growth community has hardly any financial and po-

litical supporters. Despite the long-standing efforts of the International Organization

of Crystal Growth (IOCG) and numerous related national associations, the general at-

tention is decreasing among the governments. In recent years, numerous institutes

and laboratories specified on crystal growth and even some national crystal growth

communities have disbanded. The common opinion is that the mission and necessity

of crystal growth can be settled by the firmly established areas of physics, chemistry,

and materials science. However, until now this succeeded only to a limited extent.

Whatever the development, it is my deep intention to contribute to maintaining

and reinforcing the knowledge of fundamentals of crystal growth even to the world-

wide young researchers. Therefore, I publish now my related lectures that I hold over

20 years at the Humboldt University in Berlin and subsequently in many universities,

institutes, and companies in about 30 countries. Moreover, I was teacher of 7 interna-

tional summer schools of the IOCG and about 20 crystal growth courses of the Interna-

tional Union on Crystallography (IUCr) and diverse national communities. Now is the

time to commit my lecture texts and slides to publish. Of course, during all of this

time of my knowledge transfer I was always tried to keep abreast with the latest state

of development and to bring the present book to the current state of the art.

I would like to emphasize that there is already a wide collection of excellent re-

views and textbooks on crystal growth fundamentals. Most of them I studied as base
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material for my lectures and refer to them at the end of my lecture parts. I recom-

mend emphatically using these papers and books for in-depth knowledge. However,

in my opinion, a coherent textbook series of introductory character on fundamentals

of crystal growth and defect control even for newcomers and further training is still

missing. Of course, the outstanding three volumes are Elsevier’s Handbook of Crystal

Growth of first edition (1994) and second edition (2015), and Springer’s Handbook of

Crystal Growth (2010). Though the numerous chapters of these editions have been

written by various authors of different scientific levels requiring in many cases high

expertise, numerous redundancies are unavoidable. In comparison, it is intended that

the overall image of the present lecture collection is coherent and particularly suit-

able for beginners. No detailed presentations of higher mathematics are provided

(some special important derivations are given in gray backing Spec boxes). As a spe-

cial feature, figures are prepared in the graphical form identically with my lecture

slides often combining sketches and images with the general formulas. They also con-

tain the corresponding authors and literature references for further studies.

The starting slide is shown in Fig. P.1. It shows a sketched crystallization front,

also named solid–fluid interface, propagating with normal growth velocity v. thermo-

dynamically, v depends on the driving force of crystallization Δµ being the potential

difference between the phases, here proportional to the difference between the equi-

librium temperature (Teq) and undercooled value (TIF) at the interface. However, be-

Fig. P.1: Partial processes determining crystal growth: thermodynamic (I), kinetic (II), and transport of

heat and mass (III).
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cause the thermodynamics is not able to impart the crystallization processes at the

growing interface in microscopic details, the branch of kinetics becomes involved. It

shows the various interface nature from atomistic view and its growth mode as a

function of it atomically smoothness and roughness as well as of the presence of de-

fects and foreign atoms. Finally, each crystallization requires temperature and con-

centration (pressure) gradients. This is due to the necessary control of the transport of

heat, especially the generated heat of fusion away from the interface. Additionally,

the transport of crystal building units (atoms, molecules, and dopants) toward the

growing interface is required. At the same time, undesired foreign atoms (impurities)

should be repulsed at the growing interface as effectively as possible. As can be seen,

the crystal growth processes prove to be varied and versatile, which requires a com-

prehensive study. It can be stated that the fundamentals of crystal growth are based

on three factors:

(i) thermodynamics (of phase transition),

(ii) kinetics (of crystallization processes), and

(iii) transport (of heat and mass).

This is summarized in Fig. P.2.

III

Transport
- heat transport

· conduction

· radiation

- mass transport
· diffusion

· convection

· boundary layers

· distribution effects

- morphological stability

- external forces

I

Thermodynamics
- energetic crystal potential

- phase equilibrium
· phase diagrams

· segregation coefficients 

- crystal surface and interfaces
· equilibrium shape and facets

· interfacial effects at epitaxy

- deviation from equilibrium 
· driving force, nucleation, ripening

· non-equilibrium phase diagrams

· dissipative structuring

II

Kinetics
- atomistic interface models

· Kossel-Stranski and PBC models

· surface diffusion

· surface roughening

- nucleation kinetics

- growth modes
· atomically rough interface

· atomically smooth interface

· stepped face and bunching

· kinetic growth instabilities

- segregation kinetics

Fig. P.2: Three pillars of fundamentals of crystal growth.
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Some decisional topics of each field to be treated by the following lectures are

added. Of course, all three basics are closely interrelated. Nevertheless, their individ-

ual treatment has proven to be the best and most logical for teaching effectiveness. In

a fourth lecture part, the origins of

(iv) crystal defect formations and their mastery are planned to add. Their exact un-

derstanding is only possible on the basis of the three crystal growth fundamentals

(i)–(iii).

My lecture parts correspond to this chronology.

I am very grateful to all previous national and international students for their

participation and interest in discussions in my lectures. I also have to thank all my

former research co-workers and teaching colleagues at the universities and institutes

where I was employed as well as numerous members of the German Association of

Crystal Growth and IOCG. Their widespread support, critical comments, and recom-

mendations have made an important contribution to the continuous improvement of

my lecture level. I would particularly like to mention two scientists who shaped my

own professional training in the field of crystal growth fundamentals essentially. On

the one hand, this is Dr. Lars Ickert, who introduced me by his excellent lectures into

the fundamentals of phase transition, nucleation, and epitaxy as I started to work at

the Department of Crystallography, of the Humboldt University, as young postdoc. On

the other hand, this is Prof. Alexander A. Chernov who fascinated me with his fabu-

lous training course on crystal growth fundamentals during the former international

summer school on crystal growth in Varna (Bulgaria). Also his comprehensive chapter

on crystal growth in Springer’s Modern Crystallography III (1984) provided me the

first overall overview of this enthusiastic scientific field.

It is a great pleasure for me to thank the Walter de Gruyter GmbH for enabling

the publishing of my long-lived lecture courses on fundamentals of crystal growth in

book form and, particularly, for including my lecture slides as figures in original de-

sign. My special thanks go to the Senior Acquisitions Editor Physical Sciences Kristin

Berber-Nerlinger, the Editor Ute Skambraks, and the Senior Project Manager Kowsa-

lya Perumal for the excellent cooperation, consultancy and their great effort with the

print preparation of text, formulas and reproductions.

Peter Rudolph

Schönefeld, May 2025
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Part I: Thermodynamics of crystallization





1 Introduction

1.1 The importance of thermodynamics for crystal growth

As much as we shy away from thermodynamics, we cannot do without its basic im-

portance for crystal growth and, besides, we will see below that we can even enjoy it.

To crystallize an element, compound, mixed, or heterogeneous material artifi-

cially, more exactly, to arrange a given kind or combination of atoms or molecules in

a well-ordered crystalline structure, one must first start with the transfer of the raw

material (feedstock) into a still unordered (sometimes partially preordered) fluid

phase (nutrient) without fixed particle correlation, such as melt, gas, or solution, in

order to force the atoms or molecules into a strongly structured assembly by applying

a sophisticated operation of solidification. Such a process requires the exact choice of

the starting material and professional navigation of temperature, pressure, and quan-

tity of involved chemical components. With this, we are already in the middle of ther-

modynamics, having to do with thermodynamic parameters such as T – temperature,

p – pressure, and ni – component quantity, as well as system variables such as V –

volume, E – energy, H – enthalpy, and S – entropy, for example, which one has to

control by certain crystal growth conditions, like supercooling, supersaturation, gra-

dients, cooling rates, and time programming.

Consequently, thermodynamics is an important practical tool to understand crys-

tal growth. It helps to: (i) understand the material properties, its phase relations, exis-

tence region, and stability behavior under growth conditions; (ii) find out the most

effective phase transition and select the related optimum growth conditions; (iii) de-

termine the driving force of crystallization; (iv) estimate the nucleation mode, crystal-

lization velocity, and expected crystal morphology; (v) appreciate the distribution of

dopants and impurities along the growing crystal; and (vi) establish the best measures

of process control. In short, no technological optimum can be found without consider-

ing thermodynamic relationships. Thus, thermodynamics belongs not only to the

basic theoretical knowledge of each crystal growth but also challenges its practical

dexterity and clever modern mastering of process control and automation.

However, we must always bear in mind that thermodynamics is a macroscopic

science and, therefore, of phenomenological character only. It deals with average

changes taking place among large numbers of atoms or molecules. It shows solely

macroscopic start and end states, phase relations, tendencies, and directions but not

the pathway in detail, as well as the microscopic steps of atomic size during the build-

ing of a crystalline structure. In short, thermodynamics gives answers to the questions

“why” and “when”, but it cannot explain the “how”. Responsible for the latter is the

field of kinetics – the inseparable partner within the spectrum of the “science of crys-

tal growth” to be treated in my lecture part II.
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1.2 Equilibrium and nonequilibrium thermodynamics

Let us assume an idealized “closed physical system” without any energy exchange

with the environment, consisting of two heating zones arranged one after the other,

with thermal isolation in between, quite reminiscent of a crystal growth furnace.

Only zone 1 is hot at temperature T1, while zone 2 is cold at T2, as sketched in Fig. 1.1a.

Such a situation would represent an orderly system because of the clear distinc-

tiveness of both regions. After removing the thermal isolation between both zones,

according to the second law of thermodynamics, a heat exchange dQ proceeds from

the hot zone 1 toward the colder zone 2 by the inner heat flux jT int, producing entropy

dS according to the Clausius theorem

dS≥ dQ
1

T2
−

1

T1

� �

≥ 0 (1:1)

until the thermal balance T1 = T2 = T and dQ/T = 0 occurs. In the sense of equilibrium

thermodynamics, this final situation means that the system entropy S = Q/T has

reached its maximum, or the entropy production has become zero because the former

orderly system has passed into a disorderly state of thermal equalization as follows:

dS = dQ=T = 0. (1:2)

Fig. 1.1: Closed (a) and open system (b) described by equilibrium and nonequilibrium thermodynamics,

respectively.
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From now on, any small deviation (fluctuation) from the equilibrium will always be

“reversibly” balanced.

In comparison, an “open physical system” is characterized by a continuous exchange

of energy with the environment (Fig. 1.1b). Let’s look again at the previous example of a

two-heater furnace. In order to maintain a steady temperature difference between zones

1 and 2, almost to establish a temperature gradient, one has to compensate for the real

constant loss (export) of heat through the chamber wall by a steady supply (import) of

heat energy into the hot zone. Then the internal thermal flow jT int = jT1 + jT2 from zone 1

toward zone 2 is extended by the import and export amounts jT imp and jT ext, respec-

tively. In such a case, the entropy production, consisting now of internal dSint and ex-

ternal dSext terms, is never completed and always remains greater than zero:

dS= dSext + dSint > 0 (1:3)

What this means is that in a “thermodynamically open system,” the entropy never

reaches the maximum value and is always

S< Smax. (1:4)

Due to the unattainability of thermal balance, such a system like in Fig.1.1b is in accor-

dance with nonequilibrium thermodynamics.

Strictly speaking, crystal growth and phase transition also occur under nonequi-

librium conditions and belong to an open (irreversible) thermal system where steady

internal and external transports of heat take place. Hence, the “building blocks” of a

growing crystal (atoms and molecules) follow the path from fluid to solid phase in the

sense of an irreversible flow.

Nevertheless, crystallization is generally treated in the sense of thermodynamic

equilibrium. Why? Firstly, most crystal growth processes require a relatively small

deviation from equilibrium, characterized by an almost perfect balance between the

incorporation and removal of building blocks at the interface between solid and fluid

phases. Secondly, the time for the macroscopic processes of net transfer of heat and

mass between the nutrient and solidifying phase is much longer than for the micro-

scopic events in each phase, such as atomic fluctuation rates and transition kinetics

among the atomic states. As a result, the atomic fluctuations in the system determine

the macroscopic system parameters via a quasi-statistical average. Hence, the equilib-

rium treatment of crystal growth proves to be a sufficiently good approximation that

will be applied at the most following treatises too.

However, it is necessary to note that the current theoretical treatments of crystal

growth are increasingly using the principles of “linear nonequilibrium thermodynam-

ics” to describe more exactly the processes of crystallization. Especially, the complex

defect dynamics in growing crystals is partially influenced by the phenomenon of ir-

reversible thermodynamics. As was already mentioned above, a basic characteristic

of irreversible processes is the continuous production of entropy PS = dS/dt during a

given time t. The most “exciting” result of continuous entropy production is the sys-

1.2 Equilibrium and nonequilibrium thermodynamics 5



tem’s ability to generate ordered dissipative structures. Even multiparticle systems,

such as material phases, possess enormous structural reserves for self-organization.

The total system entropy SΣ now consists of several subentropic parts. In the case of

crystal growth, these are the terms related to heat flow ST, mass transfer Si, friction

Sη, and any internal (chemical) reactions SQ:

SΣ = ST + Si + Sη + SQ + � � � < Smax. (1:5)

According to the evolution criterion of Glansdorff and Prigogine in such an irreversible

open system, any of the internal entropy parts can be removed. As a result, the sum

of total entropy SΣ decreases, and a higher ordered state will appear. For instance,

well-known dissipative structures in crystallization processes are convective flow pat-

terns in the fluid phases, strong-periodically cellular melt–solid interfaces, and dislo-

cation cell patterns (some more details are given in Section 5.5).

But now, let us start with the basic phenomena of quasi-equilibrium thermody-

namics. Note, we will not derive all relations, laws, and equations in detail. For this

purpose, an enormous number of specialized textbooks, review articles, and treatises

are available. In addition, it can certainly be assumed that every reader has a suffi-

ciently good basic knowledge of general thermodynamics. Here, we will focus on the

most relevant correlations for crystal growth only.

6 1 Introduction



2 The potential of Gibbs

2.1 The principle of Gibbs free energy minimization

Deriving from the first law of thermodynamics, each system or state of matter (in crys-

tal growth, the fluid and solid phases) possesses a conserved energetic potential G,

which is available (free) at an excited condition under a given temperature T and

pressure p, defined as Gibbs free energy (potential):

G T, pð Þ=U + pV − TS (2:1)

which is the same as

G T, pð Þ=H − TS (2:2)

where U is the internal energy, V the volume, S the entropy, and H the enthalpy.

From eq. (2.2), it becomes apparent that the convertible Gibbs free energy of a

system consists of the internal part of enthalpy (first term on the right side), which is

reduced by the bounded part (second term on the right side) representing the product

of absolute temperature and entropy.

According to the general principle, all states strive to minimize their free energy by

returning from their excited condition to a lower energy state (Fig. 2.1). Applied to the

crystallization process, this means that the single-crystalline state is a normal one be-

cause the thermodynamic potential G of a solid phase becomes minimum if its building

blocks (atoms, molecules) are perfectly packed in a three-dimensionally ordered crystal

structure with regularly saturated atomic bonds. In sum, all atomic bonds together

yield de facto the potential part H of the internal crystal energy U as follows:

U =H − pV (2:3)

Therefore, the process of ordering of the atoms or molecules “in rank and file” over

the course of regular crystallization minimizes the system's enthalpy:

H ! min (2:4)

and consequently, according to eq. (2.2), also the Gibbs free potential G of the crystal.

However, as was already discussed in Section 1.2, the entropy S strives to increase

by inducing disorder. In other words, an ideally ordered crystalline state would imply

a too limited entropy S. Thus, the minimization of Gibbs free energy is also propor-

tionally realized by an oppositely directed force of increasing entropy, causing certain

disorder according to the tendency

S ! max (2:5)

As a result, both effects of the opposite drive decrease the free energy, as it is ex-

pressed mathematically by the minus sign in eq. (2.2). That’s the point of the basic
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equation of Gibbs (Fig. 2.1). We will often meet its dialectics during our study of the

phenomena of crystallization and defect generation. For instance, at thermodynamic

equilibrium, there is no perfect crystal, but the crystallographic structure is somewhat

affected by the misplacement of some atoms in a disordered manner referred to as

point defects (see lecture part IV).

Note that the Gibbs free energy is a state function. Therefore, the change in Gibbs

free energy, represented by ΔG, depends only on the initial and final states of the sys-

tem and does not depend on the path by which the change has been carried out.

2.2 Phase transition and enthalpy of transformation

Each process of crystallization implies a phase transition. The building blocks are

transferred from an unordered fluid phase (gas, melt, and solution) into an ordered

one (crystallized solid). Additionally, there are also phase transitions in crystalline sol-

ids if they show a range of different crystal structures depending on temperature and

pressure. Both crystallization and solid-state phase transfers are first-order phase

transitions (Fig. 2.2). This means there is the coexistence of two distinct uniform

phases that are stable at equilibrium and separated by a phase boundary, i.e., an in-

terface. Close to equilibrium, the phases can still exist, one as thermodynamically sta-

Fig. 2.1: The basic phenomenon of equilibrium thermodynamics (the portrait of J.W. Gibbs is in the public
domain).
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ble and the other as thermodynamically metastable. Depending on the direction in

which the system is deviated from equilibrium, the metastable phase is superheated

(undersaturated) or supercooled (supersaturated) with respect to the stable phase. At

equilibrium of two phases 1 and 2, the first-order phase transition is characterized by

an abrupt change of the thermodynamic variables as follows:

U1 −U2 = ΔU, H1 −H2 = ΔH, S1 − S2 = ΔS, V1 −V2 = ΔV � � � (2:6)

Thus, the amount of heat (enthalpy) of transformation ΔH, at constant pressure, is to

be equated with the latent heat of crystallization L, which is released or absorbed.

Then, at the transition temperature, TTr, it becomes

G1 =G2 (2:7)

H1 − TTr S1 =H2 − TTr S2 (2:8)

L≡ ΔH = TTr ΔS (2:9)

As it is well known, the specified value of L = Q/m (Q – heat required to completely

effect a phase change, m – the mass of the substance) can be determined by differen-

tial thermal analysis and differential scanning calorimetry (DSC). Figure 2.3 shows the

Fig. 2.2: First- and second-order phase transitions.
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heating and cooling curves of CdTe and the thermal peaks of solid–solid phase transi-

tions in CsCl. From the DSC curves of heat flux versus temperature or time, the transi-

tion enthalpy can be calculated by integrating the endothermal and exothermal

peaks. Such measurements are essential for the determination of phase diagrams.

During a crystallization process, the latent heat of crystallization L, released at the

propagating liquid–solid interface, must be continuously transported away from it by

using a well-balanced combination of both temperature gradient and crystallization

velocity. For instance, when the heat balance is disturbed by a too high growth veloc-

ity, the temperature gradient at the crystallization front and, thus, the morphological

interface stability can be affected markedly (see lecture part III). The Spec box 2.1

shows the estimated quantity of heat produced at a propagating melt–solid interface

during the growth of a cylindrical silicon crystal (at first approximation comparable

with Czochralski growth).

Spec box 2.1: The heat quantity

Let us assume the crystallization of a cylindrical silicon boule with a constant diameter pulled from its

melt toward the vertical direction z. The quantity of heat dQ produced by the crystallization of the solid

volume amount dV due to temperature reduction dT is then

Fig. 2.3: Thermal effects at phase transitions in selected crystalline materials.
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dQ= cp ρ dVdT (B2:1‐1)

where cp is the heat capacity and ρ the density of the solid phase. After expressing the crystallizing

volume part dV = (dz/dt)dF with time interval dt and area differential dF and replacing the heat capacity

by the partial derivative of H at constant pressure cp = (dH/dT )p becomes

dQ=
dH
dT

� �

p
dT ρ

dz
dt

� �

dF dt (B2:1‐2)

where (dz/dt) = vz is the crystallization velocity along the coordinate z, and dF the solidifying interface

area. At constant cross section, it becomes

dQ
dt

= ΔH ρ vz F (B2:1‐3)

For instance, during the growth of an 8-inch Czochralski silicon crystal with a constant cross section F = πr2

= 314 cm2 (r – crystal radius = 10 cm) crystallizing with a constant velocity vz = 10 cm/h, after setting ΔH =

1.8 kJ/g and ρ = 2.3 g/cm3 the continuously produced quantity of heat per second at the interface yields

3.61 kW.

Tab. 2.1: Abrupt change of thermodynamic quantities at first-order phase transition (with permission from
Trans. Tech, Publ.; supplemented values are from the public domain of Wikipedia).

First-order phase transitions of selected materials

Phase transition

(→)

Materials

T and p at phase transition

Volume change

(V − V)/V = ΔV/V

Entropy

change

S − S = ΔS

Enthalpy

change

H − H = ΔH

(K) (MPa) (%) (J/mol K) (J/mol)

Vapor → solid

(V → S)

Al  . >.   × 

Si , . >.   × 

Liquid → solid

(V → S)

Al  . −.   × 

Si , . +.   × 

GaAs , . +.   × 

ZnSe , . −.   × 

LiNbO , 
−

−.   × 

Solid → solid

(S → S)

BaTiO  (T → C)✶  . . × 

ZnSe , (W → ZB)✶  . . × 

CsCl  (α → β)✶ −  . × 

C , (G → D)✶ −  . × 

Melt–solution →

solid (ms → s)

Solvent
CdTe

, Te   × 

BaO , BO   × 

YAlO , PbO/PbF
✶

  × 

NaCl  HO  . × 

✶T → C: tetragonal → cubic; W → ZB: wurtzite → zinc blende; α → β: α-CsC (CsCl structure) → β-CsC (NaCl

structure); G → D: graphite → diamond; PbO/PbF2: 1 PbO + 0.5 PbF2.

2.2 Phase transition and enthalpy of transformation 11



Figure 2.4 shows the schematic curves of H(T ), U(T ), TS(T ), pV(T ), and G(T ) along the

three phases of solid, liquid, and vapor, as well as the abrupt changes ΔH, TΔS, and pΔV

at the phase transition points at constant pressure p. Table 2.1 summarizes the values

of abrupt changes of some system variables of selected materials at vapor–solid,

liquid–solid, and solid–solid phase transitions. Some examples of solution–solid phase

transitions are added. As can be seen, while the largest differences are occuring at the

vapor–solid phase transition, but the smallest occur at solid–solid phase transitions.

During practical crystal growth processes with a first-order phase transition, each re-

sponsible grower can reconstruct the absorption and release of latent heat by observ-

ing the running heating power program and related temperature automation behav-

ior. A particularly demonstrative example is the crystallization of huge silicon ingots

for the production of solar cell wafers (Fig. 2.5). Both the heating and cooling curves,

continuously checked by thermocouples, show the characteristic effect of thermal lin-

gering due to the endothermic and exothermic reactions at the moments of melting

and crystallization, respectively. As a result, the control unit commands a related in-

crease or decrease of the electrical power.

Fig. 2.4: Temperature profiles of thermodynamic quantities (the portraits of É. Clapeyron and R. Clausius are
in the public domain).
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In the case of solution growth characterized by reduced crystallization temperature,

the question arises as to how big the difference between the quantities of heat is. The

estimation of the value of the heat of crystallization at growth from melt–solution is

shown in Spec box 2.2. One of the components in a given compound system is used as a

solvent in order to reduce the phase transition temperature. Figure 2.6 sketches the

transition enthalpy at the melting point, ΔHm, and at a melt–solution temperature,

ΔHmS, via a heating–cooling cycle. From the estimation in Spec box 2.2, it can be con-

cluded that with minor differences between the heat capacities, there is no significant

contrast between both enthalpies, and one can approximate ΔHm ≈ ΔHmS.

Spec box 2.2: The enthalpy of solution

(contributed by I. Pritula, V. Cherginets, ISC Kharkiv, Ukraine)

According to the thermal cycle in Fig. 2.6, the enthalpy of crystallization from melt–solution is

ΔHmS = − ΔH1 +ΔHm +ΔH2ð Þ (B2:2‐1)

Fig. 2.5: Sketch of the temperature–time process during the melting and crystallization of a

multicrystalline silicon ingot for solar cell production (images of feedstock crucible and crystallized silicon
ingot used with permission from IKZ Berlin).
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whereby the enthalpy change of a solid substance with heat capacity cps during the heating process 1

from a given melt–solution temperature TmS to its melting point Tm can be expressed by

ΔH1 =
ðTm

TmS

cps dT ≈ cpS Tm − TmSð Þ. (B2:2‐2)

After melting at Tm and release of ΔHm, the liquid phase with heat capacity cpL is cooled during process

2 down to the temperature Tms, and the enthalpy interval is

ΔH2 =
ðTmS

Tm

cpL dT ≈ cpL TmS − Tmð Þ. (B2:2‐3)

Setting (Tm – TmS) = ΔT and inserting (B2.2-2) and (B2.2-3) into (B2.2-1), the released enthalpy of fusion

at crystallization from melt–solution becomes

ΔHms = − ΔHm + cpS − cpL
� �

ΔT
� �

(B2:2‐4)

For example, let us estimate the value of ΔHms for a melt–solution crystal growth process of CdTe at

TmS = 800 °C (1,073 K), i.e., ΔT = (Tm – TmS) = 1,365 K – 1,073 K = 292 K below the melting point (Tm =

1,092 °C), which offers many benefits such as markedly reduced twin and dislocation densities. Such

successful growth technology proves to be the traveling heater method, where CdTe crystals are

grown from a Te-rich melt–solution zone. Taking ΔHm = 209.2 J/g, cps = 0.2 J/g K (at 800 °C), and cpl ≈
0.26 J/g K (at 1,092 °C), the enthalpy of melt-solution–solid transformation is about −191.7 J/g = −46 kJ/

mol yielding no significant difference to the latent heat of melting.

Fig. 2.6: Enthalpy of solution (left phase diagram with permission from Elsevier).
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Compared to a first-order phase transition, in a second-order phase transition, the sys-

tem variables change continuously, and heat is neither released nor absorbed. Such a

transition takes place within one phase and not between two phases. Examples

of second-order phase transitions are the occurrence of a magnetic dipole moment in

a magnetic substance upon transition from the paramagnetic to the ferromagnetic

state or the appearance of superconductivity in metals and alloys, for example. Also,

glass formation belongs to such a transition. Glass is a highly supercooled liquid-like

state with all of the atoms or molecules unaligned with one another because it has

been solidified at such a high viscosity that it prevents the transport of atoms or mole-

cules from coming together and forming the well-structured solid phase. Figure 2.2

compares the sketched courses of enthalpy versus temperature for first- and second-

order phase transitions.
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3 Phase equilibrium and phase diagrams

3.1 Two phases of one component

Concerning eqs. (2.1) and (2.2), the description of the Gibbs free energy of one given

phase is

G T, pð Þ=U + pV − TS=H − TS (3:1)

The expression for the infinitesimal reversible change in the Gibbs free energy is then

dG= dH − d TSð Þ= dH − TdS − SdT (3:2)

Adding the fundamental equation for the infinitesimal enthalpy change in depen-

dency on the parameters S and p, the fundamental thermodynamic equation for

Gibbs energy is obtained,

dH = TdS +Vdp (3:3)

which becomes zero when infinitesimal fluctuations no longer effect any change:

dG=Vdp− SdT = 0 (3:4)

If the variables T and p are constant, one obtains the slopes ∂G/∂p│T =V and ∂G/∂T│p = –S,

respectively, and the total differential of the Gibbs free energy is then

dG=
∂G

∂p

�
�
�
�
T

dp−
∂G

∂T

�
�
�
�
p

dT (3:5)

From eqs. (3.4) and (3.5), it follows that in a closed system consisting of one phase ϕ = 1

and one component C = 1 only, the temperature T and pressure p can be chosen inde-

pendently in a wide range without phase transition. Expressed by the Gibbs’ phase

rule, this means that the system has two degrees of freedom f and exists, thus, under

two-variant conditions

f = C −ϕ+ 2= 2 (3:6)

However, if T and p combination ranges to a point where the pure component under-

goes a separation into two phases (ϕ = 2), the freedom f decreases from 2 to 1 and it

becomes no longer possible to control independently T and p, without phase transi-

tion, referred to as invariant condition. Two phases (ϕ = 2) are in equilibrium when

the Gibbs free energies of the phases (G1 and G2) are equal so that the potential differ-

ence between the phases becomes zero (ΔG = 0). To illustrate the equilibrium between

the two phases best, we cross the G–T–p planes of two phases within the three-

dimensional phase space, as sketched in Fig. 3.1. The overlap of both planes results in
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the equilibrium line within the two-dimensional p–T projection and the relevant equi-

librium point in the G–T projection, where

G1 −G2 = ΔG= ΔU − TΔS+ pΔV = 0 (3:7)

Inserting ΔU + pΔV = ΔH from eq. (3.1) becomes the Helmholtz free energy ΔF as

ΔGjp,V ffi ΔFjp,V = ΔH − TΔS = 0 (3:8)

Figure 3.2 shows two examples of G–T projections of the monoatomic carbon and

compound system GaN, treated as quasi one component. Due to the extreme melting

conditions GaN cannot be grown from its stoichiometric melt but from its solving con-

stituents under a given N2 pressure. With increasing pressure, the equilibrium shifts

to higher T and the GaN stability range is extended.

Figure 3.3 depicts a schematic three-dimensional phase diagram with its related

two-dimensional p–T, T–V, and p–V projections of a one-component system (water

might serve as an approximated model when it is treated as a quasi-one-component

[H2O]). As can be seen, the triple line between the three phases of vapor, liquid, and

solid in the 3D diagram becomes triple point in the 2D p–T projection. Concerning the

Gibbs’ phase rule (eq. (3.6)) with C = 1 and ϕ = 3, this represents an invariant condition

where f = 0. Mostly, the p–T projection is used to demonstrate the crystallization (of

Fig. 3.1: Schematic G–T–p space with crossing phase planes 1 and 2 projecting phase boundaries on the

G–T – and p–T – planes (the portrait of H. Helmholtz is public domain).
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p

Fig. 3.2: G–T projections with crossing equilibrium points of solid and liquid phases of carbon (a) and solid

and solution phases of GaN (b) (open CCBY license of Taylor & Francis (a) and re-using according to the
License CC-BY 4.0 (b)).

Fig. 3.3: Phase projections of a one-component p–T–V phase space with triple lines and points, illustrating

the Gibbs phase rule (the graphics are public domains of Wikipedia).
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ice) by either lowering T from liquid phase at moderate pressures p or by increasing

p from gaseous phase at low temperatures below the triple point. The T–V and p–V

projections are particularly suitable for demonstrating the volume differences be-

tween the phases and their changes within the phases. Figure 3.4 represents the p–T

projections of the one-component systems, carbon with diamond phase and silicon.

It should be noted here that, correctly speaking, the designation “phase diagram” corre-

sponds to the 3D representation only but not to its 2D “phase projections”. Just a spatial

image is able to show the phase planes via the consecutive thermodynamic parameters

(also, the original Greek meaning διάγραμμα (diágramma) denoted a geometric shape).

Therefore, in the following phase discussions, we prefer to use the term “projection”

when a functional cut of only two variables is discussed. Of course, the colloquial lan-

guage of phase diagram for a 2D projection should also be, furthermore, commonly used.

3.2 Two phases of two (or more) components

3.2.1 Basic principles

Now, several material (chemical) components are presented (in the following, specified

by index i =A, B, C, . . ., K). In dependency on the substance interaction mode, this can

Fig. 3.4: p–T phase projections of one-component materials, such as carbon (a) and silicon (b) (with
permission of Elsevier (a) and APS (b)).
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lead to totally or partially mixed systems, compound formation, and mutual insolubility

(see below). Spec box 3.1 shows some policies for the correct indication of some substance

combinations (note, the specification by mole fraction is introduced in Spec box 3.2).

Therefore, the Gibbs free energy depends not only on the parameters T and p [see

eq. (2.1)] but also on the component quantity ni (substance mass or concentration of a

given component i). Accordingly, the potential functionality is now

G= f T, p, nið Þ (3:9)

In compliance with eq. (3.5), the total differential of the Gibbs free energy is then

dG =
∂G

∂p

�
�
�
�
T,ni

dp−
∂G

∂T

�
�
�
�
p,ni

dT +

XK

i=A

∂G

∂ni

�
�
�
�
p,T

dni (3:10)

with the partial derivatives (∂G/∂p) = V, (∂G/∂T ) = –S and the sum of potential depen-

dencies on all chemical components i = A, B, . . ., K presented in a given system.

Spec box 3.1: The substance indication

Usually, a binary completely mixed system consisting of two substances A and B is symbolized by A–B

(with a hyphen), like Si–Ge.

A ternary mixed system is characterized by A–B–C such as Ga–Al–As.

A compound is usually typified by AB (without hyphen), like GaAs or ABCm, like LiNbO3.

The addition of a dopant B, C, to a single matrix substance A is designated as A:B,C, . . . (via a

colon), like Si:As. In the case of compounds AB, the marking of added atoms should start with C as AB:

C, like SiC:Al. On the other hand, a compound can be also thought as “quasi-one-component A” so that

the dopant terms can start with B as (AB≡ A):B, like GaN (A):Mg (B).

Note that often, especially in the crystal growth of laser materials, the doping element is placed

before the matrix component in order to express its incorporation into the crystal via a colon, e.g., Yb:

YAG or Fe:ZnSe.

Normally, pro rata components deviating as excess from stoichiometry in a compound AB are re-

ferred to A or B and this state is indicated as AB–A or AB–B, like CdTe–Cd or CdTe–Te.

Material systems of mutually insoluble substances are written with a separating “+” between the

parts, i.e., A + B, AB + AC, ABCm + BCn, as is well known from eutectic compositions such as Pb + Sn,

SnSe + ZnSe, PbMoO4 +Mo3, respectively.

From eq. (3.10) follows that, at constant T and p, the change of the Gibbs potential

would depend on the variation of ni only. The related partial derivative is named par-

tial or molar Gibbs free potential g, to be equated with the chemical potential µi

∂G

∂ni

�
�
�
�
T,p

= g = μi (3:11)

The derivation of G over ni translates the extensive value of the potential to an inten-

sive one. As is well known, an intensive property does not depend on the system size

or the amount of material in the system. Examples of further intensive properties are

the temperature T, pressure p, heat capacity cp, density ρ, and concentration c. Thus,
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treatments with intensive chemical potential µi require the intensification of the

other involved variables too, i.e.,

V

ni
= v specific volumeð Þ; H

ni
= h specific enthalpyð Þ; S

ni
= s specific entropyð Þ. (3:12)

In order to express the component proportion in material systems with substituting

miscibility, such as mixed crystals Si–Ge or CdTe–ZnTe, or solid-solutions between

crystalline matrix and dopants or impurities, such as Si:As or Al2O3:Cr, one uses the

dimensionless mole fraction xi

nA

nA + nB
= xA = 1− xBð Þ (3:13)

nB

nA + nB
= xB = 1− xAð Þ (3:14)

Multiplying the mole fraction by 100 gives the mole percentage, also referred to the as

amount percent. The mass fraction wi is calculated by the formula

wi = xi
Mi

M
(3:15)

where Mi is the molar mass of the i-component and M the average molar mass of the

mixture.

In addition to binary material compounds that contain atoms of two given groups

of the periodic table at the same proportions, e.g., III–V, II–VI, I–VII, or multiple mate-

rial compounds such as II–IV–Vm, mixed forms can also be produced within the

groups, in which the proportion of atoms in one of the groups, e.g., III or V is com-

posed of two atomic varieties. This creates pseudo-binary or ternary (three atomic va-

rieties in total) mixed systems and pseudo-ternary or quaternary (four atomic varie-

ties in total) mixed systems. Spec box 3.2 summarizes the correct handling of mole

fraction for the related material systems.

After the mole fraction has been introduced, the molar Gibbs free energy for ma-

terial systems, consisting of several components i, can be expressed in the summary

form. Taking n as the sum of all material quantities at fixed T and p, the total molar

Gibbs free energy is

g =
G

n

�
�
�
�
T,p

=

XK

i=A

μi
ni

n
=

XK

i=A

μixi (3:16)

named Euler’s theorem. Thus, the chemical potential µi is concentration-dependent. To

apply it to specific phases, one must connect it to specific equations of state in order to

define their concentration and temperature dependence. For that, one can use the ideal

gas equation which says that any reaction involving liquid and solid phases is described
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Spec box 3.2: The mole fraction in systems with compounds

The indication for binary mixed crystals A–B and pseudo-binary ternary mixed crystals AB–AC or AB–CB

via mole fraction xi is A1–xBx and AB1–xCx or A1–xCxB, respectively. For example, Si–Ge, GaAs–GaP, and

CdTe–ZnTe are written as Si1–xGex, GaAs1–xPx and Cd1–xZnxTe, respectively.

For a pseudo-ternary or quaternary mixed system, two mole fractions xi and yi are required to indicate

the component relation A1–x BxC1–yDy with x = xA = nA/(nA + nB) and y = yC = nC/(nC + nD) or AB1–x–yCxDy

with x = xB = nB/(nB + nC) and y = yB = nB/(nB + nD). Such examples are well known from epitaxy of op-

toelectronic devices such as GaxIn1–xAsyP1–y or GaAs1–x–y SbxNy, respectively.

At this point, it is important to note that in the literature for mixed systems, very often a chemically

incorrect indication is used, whereby they are presented as compounds like “SiGe”, “CdZnTe”,

“GaAlN”, “GaAsSbN”, etc., i.e., by intentionally omitting the mole fraction as indices. Against this,

would be the acceptable use of round brackets like Si(Ge), (Cd,Zn)Te, (Ga,In)(As,P), Ga(As,Sb,N), a.s.o.,

when for convenience, one likes to neglect the index x.
Next frequently asked question is which scale of mole fraction is favorable to use for a binary sys-

tem A–B with compound AB formation? In other words, which value of xi is best manageable to indi-

cate the component ratio between the compound AB and a certain excess of one of the components A

or B? For instance, this is the case at melt–solution growth when one compound partner A or B is

applied as solvent. The following two scaling variants are possible:

i) xi is used for the determination of the total A/B ratio as nA/(nA + nB), i.e., from pure component A

with xB = 0 (≡ 100% A: 0% B) to pure B with xB = 1 (≡ 0% A: 100% B) so that the compound AB is

indicated by the mole fraction xB = 0.5. This variant is favorable for weighing a feedstock before

the synthesis of AB is started, for example.

ii) xi is used for the region between the compound AB and one of the substance partners A or B

only. Taking for this case, the index yB = nB/(nB + nAB) = 1, for 0% AB: 100% B and yB = 0 for 100%

AB: 0% B. Such a variant is favorable for use at melt–solution growth of a compound AB, starting

from a seed crystal AB in a solvent A or B. The relation between both mole fractions is sketched

as following.

∣_________________∣__________________∣

A AB B

∣_________________∣__________________∣

0 0.5 xB 1

∣__________________∣

0 yB 1

Because

xB = 1jyB=1 and xB = 0.5jyB=0 (B3:2‐1)

within the region 0.5 ≤ xB ≤ 1, it applies

1− xBð Þ
1− yBð Þ =

xB
1

(B3:2‐2)

and after simply rearranging eq. (B3.2-2), the value of yB becomes

yB =
2xB − 1ð Þ
xB

= 2−
1

xB
(B3:2‐3)
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by reaction between vapors of the substances (see Spec box 3.3). Accordingly, the

chemical potential of a component i in a particular phase of solution is

μi = μ0i T, pð Þ+RT ln γixið Þ (3:17)

where µi
0 is the standard potential (chemical potential of pure species i), R the univer-

sal gas constant, and γi the activity coefficient of a given component i. The value γi is

the coupling factor between the mole fraction of a given substance and its activity ai,

also named fugacity in gas-related expressions:

ai = γi xi (3:18)

Thus, the activity is used to account for deviations from ideal behavior in a mixture

of substances. For instance, in an ideal mixture (ideal solution), the microscopic inter-

actions between each pair of chemical species are the same (or macroscopically equi-

valent, i.e., the enthalpy change of solution and volume variation in mixing is zero)

and, therefore, the activity coefficient γi becomes unity. In this case, the properties of

the solution can be expressed directly in terms of simple concentrations or partial

pressures of the substances according to the Raoult’s law. The deviations from ideal-

ity, however, are expressed by γi ≠ 1 (see below).

Generally, in a given material mixture containing both the ideal and real parts of

chemical potential, one can combine as a sum of an ideal contribution and an excess

contribution

μi = μidi + μexi (3:19)

whereas the ideal part depends on the mole fraction xi only. But the intermolecular

interaction between the same species and with other presented species, expressed by

the activity according to eq. (3.18), is considered in the excess part.

Now, let us look at the component correlation in the energetic consensus. In addi-

tion to the standard molar free energy of the presented pure components g0, the total

molar free energy g = h –Ts contains a mixing term Δgm

g = g0 + Δgm (3:20)

According to eqs. (3.16) and (3.19), the functional expression via chemical potentials

and mole fraction is

g xð Þ=
XZ

i=A

μ0i xi + Δμm (3:21)

where µi
0 is the standard chemical potential of the presented pure components and

Δµm the mixed potential. Referring to eq. (3.1), it becomes
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μ xð Þ=
XZ

i=A

μ0i xi + Δhm − TΔsmð Þ (3:22)

where Δhm and Δsm are the molar enthalpy of mixing and molar entropy of mixing,

respectively [see eqs. (3.24) and (3.25)].

As is well known, the enthalpy of mixing (or heat of mixing or excess enthalpy) is

the energetic quantity liberated or absorbed from a substance upon mixing. When a

substance or compound is combined with any other substance or compound, the en-

thalpy of mixing is the consequence of the new interactions between the two substan-

ces or compounds. If the mixture proceeds at constant pressure, the mixing enthalpy is

the same as mixing heat. The total molar enthalpy of the system, after mixing, is then

hmixture = Δhm +

X

xihi (3:23)

where hi is the standard enthalpy of pure components i.

Spec box 3.3: The chemical potential of ideal and real solution

In an ideal gas, the specific (molar) volume vmol at constant temperature T is given by the first deriva-

tive of the chemical potential µ from the pressure p, which is coupled with the ideal gas law as

∨mol =
∂μ

∂p

�
�
�
T
=
RT
p

(B3:3‐1)

from which follows

dμ=
ðp

p0

RT
dp
p

= RT d ln
p
p0

. (B3:3‐2)

Consequently,

μ= μ0 Tð Þ+ RT ln
p
p0

(B3:3‐3)

and when p0 is chosen as unity (1 atm), one obtains the convenient form

μ= μ0 Tð Þ+ RT ln p. (B3:3‐4)

where µ0(T) is the standard chemical potential that depends on the temperature only.

In an ideal solid mixture, each partner acts like an ideal gas. Thus, eq. (B3.3-4) must also be valid for

each individual partner i with partial pressure pi as

μi = μ0i Tð Þ+ RT ln pi (B3:3‐5)

According to Raoult’s law, the partial pressure of a substance over an ideal solution equals the product

of the mole fraction and the total pressure,

pi = xi p (B3:3‐6)

The insertion of eq. (B3.3-6) into eq. (B3.3-5) yields the following partial chemical potential:

μi = μ0i Tð Þ+ RT ln p+ RT ln xi (B3:3‐7)
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When using the mole fraction as measure of concentration, the first and second terms on the right

side are combined as standard potential, depending on T and p, and the partial chemical potential in

ideal solutions is then

μi = μ0i T , pð Þ+ RT ln xi (B3:3‐8)

On the other hand, for real solutions, we have to use eq. (3.18), and the partial chemical potential re-

lates to the activity as

μi = μ0i T , pð Þ+ RT ln ai (B3:3‐9)

In other words, for an ideal solution, the activity coefficient of the mixed materials is γi = 1 and the

activity ai equals the mole fraction xi as is used in the second term of eq. (B3.3-9).

Usually, one has to consider that the chemical potential depends upon pressure and temperature. It is
convenient to approximate this dependency by using the linear functions:

μi Tð Þ= μi T0ð Þ+ α T − T0ð Þ (B3:3‐10)

μi pð Þ= μi p0ð Þ+ β p− p0ð Þ (B3:3‐11)

Here, α is the temperature coefficient and β is the pressure coefficient of the chemical potential. The

equations allow us to calculate the chemical potential at temperature T and pressure p, if the poten-

tials µi(T0) and µi(p0) at temperature T0 and pressure p0 are known. The coefficients α and β are given

by the derivatives α= ð∂μi=∂TÞp, x =−s and β= ð∂μi=∂pÞT , x= v, where s is the molar entropy and v is the
molar volume.

The molar mixing enthalpy Δhm consists of the partial molar mixing (excess) enthal-

pies of each component Δhim, where i = A,B, . . ., K

Δhm = xAΔhAm + xBΔhBm + � � � + xKΔhKm =

XK

i=A

xiΔhim (3:24)

The entropy of mixing (or configurational entropy) provides information about the

constitutive differences of intermolecular forces or specific molecular effects in the

materials. For mixed crystals, comparable with many-particle systems, the statistical

concept of randomness can be used. Accordingly, the ideal mixing of materials is re-

garded as random at the atomic or molecular level. This is qualitatively easily visual-

ized in terms of the increased disorder brought about by mixing.

On the other hand, mixing of nonideal materials may be nonrandom or rather

ordered, exhibiting a reduced value of mixing entropy. In general, the molar entropy

of mixing of i components with mole fractions xi is

Δsm = −R
XK

i=A

xi ln xi (3:25)

with R the gas constant. The derivation of eq. (3.25) is shown in Spec box 3.4.
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Spec box 3.4: The entropy of mixing

When two pure substances A and B are mixed under normal conditions, there is usually an increase of the

system entropy. The comparison with the mixing of ideal gases is then obvious. Since the molecules of

ideal gases do not interact, the increase in entropy must simply result from the extra volume available to

each gas, on mixing. Thus, for gas A the available molar volume has increased from vA to (vA + vB). By calcu-
lating the entropy of expansion of each gas, we can conclude on the entropy of mixing as the following.

From the first and second law of thermodynamics, we can write

dU= TdS − p d ∨ (B3:4‐1)

and after transposition, we obtain

dS =
dU
T

+
p
T
d∨ (B3:4‐2)

Because for ideal gases dU = 0 and pV = niRT, the entropy of expansion of the gas A into the total vol-

ume V of both A and B is obtained from

ðSB

SA

dS = niR
ð∨B

∨A

d ∨
∨

= niR
ð∨B

∨A

d lnv (B3:4‐3)

so that the entropy of expansion of each gas A and B becomes

ΔsA =−R ln
∨A + ∨B

∨A

� �

andΔsB =−R ln
∨A + ∨B

∨B

� �

(B3:4‐4)

and because VA = nAVAm, VB = nBVBm with nA, nB, the component quantities, and VAm = VBm = Vm, the mixing

volume at equal p0,T for gases A and B becomes

∨A + ∨B

∨A
=
nA ∨m + nB ∨m

nA ∨m
=
nA + nB
nA

=
1

xA
and

nA + nB
nB

=
1

xB
(B3:4‐5)

with ln 1
xi
=−ln xi it becomes Δsm =−R nA ln nA + nB ln nBð Þ. Dividing it by the total component quantity

(nA + nB), the molar entropy of mixing is

Δsm = −R xA ln xA + xB ln xBð Þ (B3:4‐6)

Expanding this equation to a multicomponent system becomes eq. (3.25).

Note, during a process of crystallization also, the presented atoms or molecules of differing compo-

nents do mix either immediately at the growing solid-fluid interface or within the cooling crystalline

phase by interdiffusion. As a result, solid mixtures of two or more components are formed as mixed

crystal or alloy. Again, the same equations for the entropy of mixing can be used, but only for homoge-

neous uniform phases.

3.2.2 Ideal mixed systems

We start with the molar Gibbs free energy of mixing (≡ chemical potential of mixing)

Δgm = Δhm − TΔsm (3:26)
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with Δhm and Δsm the molar mixing enthalpy and mixing entropy, respectively. A ma-

terial system with ideal mixing is an ideal solid or fluid solution with thermodynamic

properties, analogous to those of a mixture of ideal gases. That means, there are quasi

no intermolecular interactions between the species of the constituting components,

and the ideal mixing enthalpy becomes zero:

Δhidm = 0 (3:27)

Therefore, the activity coefficient γi, indicated by eq. (3.18), is equal to 1 and, thus, the

activity ai is expressed by the mole fraction xi as

ai = xi (3:28)

and the ideal partial chemical potential is

μidi = μ0i T, pð Þ+RT ln xi (3:29)

As compared to the zero-enthalpy of mixing, the entropy of mixing is still acting to

promote disordering during mixing. As a result, the configurational entropy is in-

creasing versus mole fraction, as given in eq. (3.25). Assuming that the number of the

components participating in the mixing process is only two, namely A the crystalline

matrix and B dissolved in it. The molar entropy of mixing in eq. (3.25) becomes, for

such a binary ideal A–B mixed system (in our case mixed crystal),

Δsidm =−R xA ln xA + xB ln xBð Þ (3:30)

and according to eqs. (3.22) and (3.29), the total chemical potential is modified as

follows:

μ xð Þid = μ0AxA + μ0BxB
� �

− TΔsidm (3:31)

μ xð Þid = μ0AxA + μ0BxB
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
+RT xA ln xA + xB ln xBð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(3:32)

μ xð Þid = μ0i xð Þ + Δμidm xð Þ (3:33)

where µA
0 and µB

0 are the standard chemical potentials of pure components A and B,

respectively, µi
0(x) is the total standard potential, and Δµm

id the relative chemical po-

tential difference between the chemical potential μi of a component in solution and

the chemical potential μi
0 of the same component in a standard state. If we just con-

sider only the chemical potential of an ideal mixing, we will obtain,

Δμidm xð Þ=−TΔsidm =RT xA ln xA + xB ln xBð Þ (3:34)

Figure 3.5 shows the total chemical potential µ, as function of the mole fraction xB for

a given temperature T in an ideal mixed system of one phase (e.g., solid), according to

eq. (3.34). As we can see, the total chemical potential µ(x)id forms a catenary curve
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below the straight line of the total standard potential µ0(x), whereupon, the degree of

its bending is determined by the potential of ideal mixing Δμidm xð Þ=−TΔsidm . The mini-

mum chemical potential is found at mole fraction 0.5 when both components are

completely mixed in each other in equal proportions. Note, considering the propor-

tionality dµ ~ –s dT, the curvature of the total chemical potential µ(x) is decreasing

with increasing temperature.

Now let us consider the presence of two ideally mixed phases like a liquid (melt) and a

solid (crystal), each consisting of two components A and B with mole fraction xB that

increases with content of B. Both states have a total chemical potential µL(x) and µS(x) as

is shown by the µ(x) curves at four different temperatures in Fig. 3.6a. At high tempera-

ture T6, the potential for the liquid solution is lower than that of the solid phase over the

whole composition range and, therefore, the stable state. In contrast, at low temperature

T1, the potential for the solid solution is lower than that of the liquid phase. At certain

temperatures, in the range T5 < T < T2, the two functions µL(x) and µS(x) are intersecting.

Their contact starts at temperature T5, identical with the melting point of the higher-

melting component A and ends at T2, the low melting point of component B. At both

melting points, liquids AL and BL and solids BS and AS are in equilibrium. In between,

the stable state with the lowest chemical potential is a mixture of solid and liquid solu-

Fig. 3.5: Total chemical potential versus mole fraction in an ideal mixed phase.
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tions, defined by the contact points of a common tangent (see µ(x) projections at T3 and

T4 in Fig. 3.6a). Hence, the compositions of the coexisting phases are those at the points

of tangency (the tangent construction is given in the Spec box 3.5). Applying the potential

situation for each temperature step, one can construct the T–x phase projection for an

ideal mixed system A1–xBx, sketched in Fig. 3.6b. The distance between liquidus (S) and

solidus (L) is determined by the proximity of the curves of the mixing entropy in both

phases. The mole relation between S and L defines the thermodynamic equilibrium coef-

ficient k0, which will be discussed in more detail in Section 3.2.6.

Concerning the tangent construction sketched in Fig. 3.7, it often arises the question

how can it be that the total free energy between the minima of both the catenary

curves, µS(xB) and µL(xB), and within the concentration region, xmin
BS < xB < xmin

BL (see

Fig. 3.7), be lower than the related curve values, but corresponds with the tangent

line? The answer is: although the potentials of the µS,L(xB) curves are differing within

this region, it does not yet mean that the system is in equilibrium when one of the

curves is below the other; it reaches its minimum free enthalpy in the form of a two-

phase state S + L, consisting at a given T of the concentration ratio xmin
BS =xmin

BL , i.e., they

both touch the points of the tangent. In other words, if the A and B atoms in the ho-

mogenous liquid solution rearrange, a portion transforms to a solid, with composition

ΔxBS, and a portion remains in a liquid solution, with composition altered to ΔxBL; the

Fig. 3.6: µ–x (a) and T–x projections (b) of a system with near ideal mixing in the liquid and solid phases

(k0 – equilibrium segregation coefficient).
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heterogeneous solid-liquid mixture takes on the molar free energy �geq ≡ �μeq, being lower

than that of the homogeneous liquid solution (within the range of xmin
BS < xB < xmin

BL ). The

geometrical calculation proof, according to Fig. 3.7, is given in Spec box 3.5.

Spec box 3.5: The tangent construction

The total chemical potential of a two-component system A–B is

μ= μAx + μB 1− xð Þ (B3:5‐1)

From Fig. 3.7, it follows that phase S has, at the mole fraction xBS, the potential µS(xBS), and phase L
has, at the mole fraction xBL, the potential µL(xBL). The equilibrium potential µeq along the tangent be-

tween the two curves µ(x)S and µ(x)L is given by both slopes at the points xmin
BS and xmin

BL as

∂μS
∂x

= μ
eq
AS − μAS and

∂μL
∂x

= μBL − μ
eq
BL (B3:5‐2)

Generally, two phases (e.g., solid and liquid) are in equilibrium when the chemical potentials of all con-

stituents are identical. In a binary A–B system, it follows that

μAS = μAL and μBS = μBL (B3:5‐3)

The convertibility of chemical potentials from eq. (B3.5-3) in eq. (B3.5-2) shows the equality of both deriv-

atives, i.e., slopes at both tangential contact points of the µL(x) and µS(x) curves. As a consequence, the
common tangent construction ensures the equality of chemical potentials of A and B in the solid and liquid

Fig. 3.7: Two-phase equilibration in a binary system A–B, demonstrated by the tangent construction.
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phases within the range xmin
BS < xB < xmin

BL . Thus, it proves to be the criterion for phase equilibrium and,

simultaneously, minimizes the total Gibbs energy by the equality of the chemical potentials. The

chemical potentials that are in equilibrium at the tangential contact points are μeqAS , μ
eq
BS , μ

eq
AS , and μ

eq
BL .

According to eq. (B3.5-1) and the equality of chemical potentials in the liquid and solid phases, the

total chemical potential in the range xmin
BS < xB < xmin

BL is given by

�μeq xð Þ= μ
eq
AS x + μ

eq
BL 1− xð Þ= μ

eq
AL x + μ

eq
BS 1− xð Þ (B3:5‐4)

For instance, setting x = 1 and 0 becomes μ
eq
AS = μ

eq
AL and μ

eq
BL = μ

eq
BS , respectively. This means that the

chemical potentials in both S and L phases are equal due to the tangential determination of the equi-

librium contact points xmin
BS = xeqB and xmin

BL = xmin
1−Að ÞL = xeq1−Að Þ.

There remains the question: Are there such material systems of ideal mixing over the

whole composition range? Principally, such a state must be subject to strict condi-

tions. In 1932, Hume-Rothery postulated the following rules for the ideal mixing of two

elements: i) their atomic radii must be within about 15% of each other, ii) they must

have the same crystal structure, iii) they must have similar electronegativity values,

and iv) they must have the same valence, which is a measure of an atom’s ability to

combine with other atoms. That means, only isomorph components are able to realize

such a complete intersolubility.

Actually, one can find several ideal mixtures between liquids, such as methanol

and ethanol or CCl4–SnCl4, for example. In contrast, the finding of ideal solid solutions

is very limited. Examples are the phase diagrams of the mixed crystal systems Ag–Au

(Fig. 3.8a) and HgTe–HgSe, which show a near convergence between solidus S and

liquidus L over the whole composition range. Additionally, in a few cases of ideal

mixed systems, a partial section exists within the T–x projection near one of the com-

ponents, like in the system CdTe–CdSe (Fig. 3.8b). In the region of mole fraction 0 <

xCdSe < 0.18, liquidus and solidus are de facto coinciding. Principally, mixed crystal sys-

tems with small L–S lenses are proving to be advantageous at crystal growth from

melt due to the minimal effect of segregation (the ratio k0 in Fig. 3.6b) and, thus, re-

duced chemical composition inhomogeneity along the crystallization direction.

In the past, often, the ideal solution model has been applied to describe the molar

Gibbs free energy of a material system. However, it has been recognized that the ideal

solution model mostly suffers from a lack of accuracy, as already reported by Hilde-

brand in 1927 and by Guggenheim in 1932. They introduced the regular solution model

based on the framework of statistical mechanics for binary systems, which are dis-

cussed in the next chapter.

3.2.3 Real mixed systems

Deviations from ideality are the usual case. The atoms or molecules of the substances to

be mixed show enhanced energetic interaction (attraction or repulsion) either between
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each other or among themselves. Now, in comparison to ideal mixed systems, a real

mixed one shows not only a given molar entropy of mixing but also a changed enthalpy

of mixing and, thus, in addition to Δsm ≠ 0, it is also Δhm ≠ 0. Therefore, the functional

course of the molar free energy g(x) = µ(x) of a real mixed crystal, introduced by

eq. (3.22), differs quantitatively from that of an ideal mixed crystal as

g xð Þ= μ xð Þ=
XZ

i=A

μi0xi + Δhm − TΔsmð Þ (3:35)

Substituting the expressions for Δhm and Δsm, according to eqs. (3.24) and (3.25), becomes

μ xð Þ=
XZ

i=A

μi0xi +
XK

i=A

xi Δhim −RT
XK

i=A

xi ln xi (3:36)

A considerable simplification of eq. (3.36) takes place when we have to do it with a

system of regular solution, which is quite usual for the case of dilute solutions, where

the matrix component is markedly in excess. Especially, if the atomic (or molecular)

sizes and electronic structures of the components (e.g., A and B) are similar, then the

distribution will be nearly random, and the configurational entropy will be nearly

ideal. Thus, the solution is formed by random mixing of components without strong

specific interactions and its behavior differs from that of an ideal solution only mod-

Fig. 3.8: Systems with nearly ideal mixing in the liquid and solid phases (with permission of AIP Publishing
(a) and The Electrochem. Soc.(b)).
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estly. Although the entropy of mixing does not have to be taken into account (Δsm ≈ 0;

note, it is with some share that it is still integrated in activity), the system is further

nonideal due to a non-zero enthalpy of mixing (Δhm ≠ 0), and eq. (3.36) becomes

μ xð Þreg =
XZ

i=A

μi0xi +
XK

i=A

xi Δhim (3:37)

where Δhim = Δh
reg
im is the partial molar enthalpy of a regular solution, the so-called thermal

tone, generating or releasing during the mixing process. According to eq. (3.29) applies

Δh
reg
im =RT ln ai =RT ln xiγi (3:38)

Then, the total chemical potential of a regular mixing system consisting of two compo-

nents A (matrix) and B (solvent) in eq. (3.37) is

μ xð Þreg = μ0AxA + μ0BxB
� �

+RT ln xA + ln xBð Þ+RT ln γA + ln γBð Þ (3:39)

where the first two terms on the right represent the ideal potential (mechanical mix-

ing) and the last term, the excess potential, as was introduced by eq. (3.19).

The knowledge of the variation with temperature and composition of the activity

ai of component i, or the activity coefficient of γi is of primary importance for the

thermodynamic treatment of solutions, especially mixed melts and mixed crystals.

This is required for the determination of the partial molar Gibbs energy of mixing of

the components, which is required for the determination of the equilibrium state of

any mixing process that involves component i in the solid solution.

The activity coefficient γi is a unitless thermodynamic function. Its value varies

around unity. An activity of 1 means that the component is pure and does not exhibit

solid solution, or it is ideally mixable with another component. If γi > 1, a nonideal so-

lution takes place, where the component i exhibits a positive deviation from Raoult’s

law, then ai > xi, and in the evaluation of its chemical potential, component i “acts as

if” the solution contains more of components i than the mole fraction suggests. Simi-

larly, if γk < 1, a nonideal solution is presented, where the component i exhibits a neg-

ative deviation from Raoult’s law so that ai < xi, the component “acts as if” there is less

of it present than the composition suggests.

It should be noted here that there is an extensive number of literature, textbooks,

and internet links explaining the experimental and theoretical determination of the activ-

ity coefficient in more detail. Generally, the variation of ai or γi with temperature and

composition must be determined experimentally. One of the experimental methods is the

determination of the partial vapor pressure of the solvent and solute pi. In accordance

with Raoult’s law, the relative partial pressure pi/pi0 (pi0 – equilibrium vapor pressures of

the pure components) is proportional to the product of mole fraction and the coefficient

of fugacity (≡ coefficient of activity) pi/pi0 = γi xi, which becomes γi = (pi/pi0)1/xi0.
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Frequently, however, few or no mixture data are at hand, and it is necessary to

estimate activity coefficients from some suitable prediction method. Unfortunately,

only few truly reliable prediction methods have been established. A relatively simple

theoretical model of activity is to assume that the free energy of mixing versus mole

fraction of a binary system has a minimum symmetry at 50:50 solution and increases

symmetrically toward each pure component following a parable curve y =mx2. Then,

for such a symmetric solution model, the activity coefficient γi in a binary system is

related to the excess enthalpy of mixing as

ΔhexAm xð Þ=RT ln γA =Ω 1− xAð Þ2 =Ωx2B (3:40)

ΔhexBm xð Þ=RT ln γB =Ω 1− xBð Þ2 =Ωx2A (3:41)

Or, universally, for multicomponent solutions

Δhexim xð Þ=RT ln γi =Ω 1− xið Þ2 =Ωx2j (3:42)

where Ω is the interaction parameter, comparable with energy of interaction ω (Mar-

gules parameter). In detail, each atom in a fluid and solid phase interacts energetically

with the surrounding atoms of different elements, which can be derived for a binary

solution by the model of quasi-chemical equilibrium in the intensified form as

Ω= ZNA ωAB −
1

2
ωAA +ωBBð Þ


 �

(3:43)

with Z the number of nearest neighbors, NA the Avogadro number, and ωAB, ωAA, and

ωBB the interaction energies of the three possible neighbor pairs A–B, A–A, and B–B, re-

spectively. Note that interaction energies are attractive or repulsive forces between atoms

or molecules. We must not confuse them with bonds! Of course, they are correlating with

bond energies as following: the system requires a low interaction energy when the bond

energy between pairs is strong. On the other hand, a large amount of energy is needed

to bring together pairs with low mutual bond energies. Incidentally, the exact determi-

nation of the total interaction energies in a given mixed system proves to be a certain

challenge requiring theoretical ab initio calculations and tuned spectroscopic analysis.

To simplify, the value of Ω is often assumed to be constant over a range of physi-

cal conditions. Somewhat more complicated is to acknowledge that it varies with tem-

perature or even with pressure. The detailed background of eq. (3.43) and further der-

ivations for the interaction parameter are given in the Spec box 3.6.

In eq. (3.43), one can differentiate between the following two general cases dem-

onstrated in Fig. 3.9:

a) strong mutual bond energies between the components A and B but weak bonds

inside both the partners A–A and B–B, needing a lower interaction energy be-

tween A and B, so that eq. (3.43) accordingly becomes
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ωAB <
1

2
ωAA +ωBBð Þ and Ω< 0 (3:44)

As a result, the system reduces the inner energy when each atom is surrounded by

the other kind of atoms and it therefore tends to form a mixed fluid or solid (mixed

crystal), sketched in Fig. 3.9a. In the particular case, the enhanced chemical reaction

between the differing elements leads to the formation of compounds AB;

b) strong bonds inside each pure component A–A and B–B but only weak mutual

bond energies between the differing components A and B, needing a higher inter-

action energy between A and B so that eq. (3.43) accordingly becomes

ωAB >
1

2
ωAA +ωBBð Þ and Ω> 0 (3:45)

As a result, the system tends to phase separation into both individual phases A and

B, like in eutectic solid states ormonotectic liquid states, for example (see Fig. 3.9b).

In comparison, an asymmetric solution model assumes that the excess enthalpy of

mixing of a binary solution can be described by

Δhexim xð Þ= xAxB Ωh1xB +Ωh2xAð Þ (3:46)

Fig. 3.9: Mixed solutions with a) attractive and b) repulsive forces between the components A and B.
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That means, we have two interaction parameters instead of one in the symmetric

model. Thus, a curve describing the free energy of mixing now has a distorted para-

bolic shape, minimizing at some composition other than x = 0.5 unless Ωh1 = Ωh2. For

this model, the activity coefficients are calculated as

ln γA = x2B Ωh1 + 2xA Ωh1 − Ωh2ð Þ½ � (3:47)

ln γB = x2A Ωh1 + 2xB Ωh1 −Ωh2ð Þ½ � (3:48)

In 1975, Pelton and Thomson, using a symmetric solution model, calculated for a hypo-

thetical system A–B with regular solid and liquid phases, the topological change in the

phase diagram via systematic changes of the interaction parameters ΩS and ΩL . The

obtained Fig. 3.10 shows emphatically how the well-known principal types of T–x pro-

jections come into existence via such thermodynamic considerations – a really im-

pressive picture for each crystal grower!

Already in 1948, Redlich and Kister extended the interaction energy term for bi-

nary and multicomponent systems to adapt the model still better to experiments by

estimating the standard deviation between the experimental and calculated data by

the so-called sub-regular model. This analysis can be used to fit activities in two-

component mixtures over the entire concentration range, and to calculate the activi-

ties of both components. The variation of the parameters with the composition and

temperature of the mixtures has been discussed in terms of the molecular interac-

tions in these mixtures. The molar excess Gibbs free energy is expressed as

gex

RT
= xAxB B+ C xA − xBð Þ+D xA − xBð Þ2

h i

(3:49)

where B, C, and D are constants. In terms of the ratio of activity coefficients, the

Redlich–Kister equation is

ln
γA
γB

=B xB − xAð Þ+C 6xAxB − 1ð Þ+D xB − xAð Þ 1− 8xAxBð Þ (3:50)

whereas the determination of the constants B, C, and D involves plotting of ln(γA/γB)

as a function on xA and reading the ordinate values from the curve at various prese-

lected xA values, for example, when xA = 0.5,C=2= lnðγA=γBÞ.
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Fig. 3.10: Topological change in the T–x phase projections as function on the interaction parameter in

regular solid and liquid phases of A–B systems (with permission of Elsevier).
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Spec box 3.6: Predictions of the interaction parameter

Several approaches are discussed in the literature. Here, we show only some selected models being

applicable, especially for crystallization processes.

i) Henrian ideal solution

In case, a solution is sufficiently diluted in one component, one can approximate

μi ≈ RT ln γi (B3:6‐1)

by its value in an infinitely dilute solution. That is, if the mole fraction of the solute xi is small, one can

set γi = γi0, where γi0 is the Henrian activity coefficient at xi ≈ 0. Thus, for sufficiently dilute solutions, one

can assume that γi is independent of composition. Physically, this means that in a very dilute solution,

there is negligible interaction among solute particles. Hence, each additional solute particle added to

the solution makes the same contribution to its excess Gibbs energy so that μi = ∂G/∂ni = const. Accord-
ing to the Gibbs–Duhem equation for a binary solution, xA dµA

eq + xB dµB
eq = 0, a negligible potential

change of the solute (A) dµA
eq
≈ 0 equates to dµB

eq
≈ 0 of the solvent (B), leading to the ideal solvent

behavior with constant γB ≈ 1. Finally, for dilute solutions with xB ≈ 1, Henry’s law is applied

γA = γ
0
A = const; γB ≈ 1 (B3:6‐2)

Henrian activity coefficients can usually be expressed as functions of temperature

RT ln γ0i = a− bT (B3:6‐3)

where a and b are constants. If data are limited, it can further be assumed that b ≈ 0 so that RT ln γi0 =

const.

ii) Model of quasi-chemical equilibrium (QCE)

This belongs to an atomistic interpretation. In pure components, each atom possesses Z nearest neighbors,
i.e., Z (A–A) or Z (B–B) bonds with the interchange energy per atom Z/2ωAA or Z/2ωBB, respectively. Multiply-

ing by the Avogadro’s constant, NA becomes the interchange energies per mol, NA (Z/2) ωAA or NA (Z/2) ωBB.

The probability of A–A or B–B bonds within two neighboring sites is (1–xB)
2 or xB

2, respectively. Thus, the

quantity of A–A and B–B bonds is NA (Z/2) (1–xB)
2 and NA (Z/2) xB

2.

Besides homogeneous bonds A–A and B–B, similar to a chemical reaction, in a mixed system also,

heterogeneous A–B bonds are formed. According to the quasi-chemical treatment, the statistical quan-

tity of A–B bonds per mol is NA Z xBxA = NA Z xB(1–xB), with xA, xB the mole fractions.

Now, the total inner energy of a mixed crystal is assumed to be the sum of the interchange ener-

gies of the three possible types of neighborly bonds, A–A, B–B, and A–B, given as

ω�
A−B =ωAA +ωBB +ωAB (B3:6‐4)

Note, in this approach, the influence of heat oscillations on the atomic arrangement and the strain energy

between atoms are neglected and it is treated only spatially as configurational energy. Inserting the three

bond quantities from the above into eq. (B3.6-4), the total interchange energy is

ω�
A−B =

1

2
NAZωAA 1− xBð Þ2 + 1

2
NAZωBBx

2
B +NAZωABxB 1− xBð Þ (B3:6‐5)

and after adjusting this formula, one obtains

ω�
A−B =

1

2
NAZ ωAA 1− xBð Þ+ωBBxB½ �+NAZ xB 1− xBð Þ ωAB −

ωAA −ωBB

2

� 
h i

(B3:6‐6)

whereas the second term on the right describes the mixing interchange energy, NA xB xA Ω, with the

interaction parameter Ω as has been already ad hoc presented in eq. (3.43).
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Ω= ZNA ωAB −
1

2
ωAA +ωBBð Þ


 �

(B3:6‐7)

Finally, using eq. (3.42), the activity coefficients of the constituents are calculable by

RT ln γi =Ω 1− xið Þ2 =Ωx2i (B3:6‐8)

Solutions with constant interaction parameter Ω are classified as strictly regular. Taking into account

the temperature dependence, a quasi-regular solution model is

Ω= a− bT (B3:6‐9)

comparable with (B3.6-3), whereupon it can be inserted a= RT ln γi=x
2
i and b=Δsm=x2i . If b = 0, a

strictly regular case takes place. An athermal solution occurs if Ω=−bT .

iii) Model of delta-lattice parameter (DLP)

In 1972, Stringfellow developed a semiempirical expression for the calculation of the interaction param-

eter, based on the difference in the lattice constants of the constituents in binary A1–xBx and pseudo-
binary ternary semiconductor mixed crystals AB1–xCx. In this model, the enthalpy of mixing is related to

the effect of composition on the total energy of the bonding electrons. This leads to an approximate

representation of Ω in terms of only the lattice parameters of the two binary constituents AB and AC:

Ω= 4.375K Δað Þ2=�a4.5 (B3:6‐10)

with Δa the lattice parameter difference, �a the average lattice parameter, and K an adjustable constant

that can be obtained by fitting to the experimental data according to ΔHat = K a
−2.5 > 0 (ΔHat – enthalpy of

atomization, i.e., the amount of enthalpy change when a compound’s bonds are broken and the compo-

nent elements are reduced to individual atoms). K proved to be the same for all III–V alloys, yielding a

value of 1.15 × l07 cal/mole Å−2.5. The Δa2 dependence in eq. (B3.6-10) suggests that the main effect in the

DLP model is the strain energy associated with deformation of the bonds in the alloy. The later devel-

oped valence force field (VFF) mode specifically considers the short-range energy required to stretch and

bend the bonds without the adjustable parameter.

iv) Model for ionic solutions

For the solution of substances that ionized in solution, the activity coefficients of the cation and anion

cannot be experimentally determined independently of each other because solution properties de-

pend on both ions. However, single-ion activity coefficients can be calculated theoretically. Once, one

knows the molar concentration of the free ion ci (~ mole fraction xi), it is converted to the activity ai by
the free-ion activity coefficient γi

ai = γi ci (B3:6‐9)

whereas γi corrects for electrostatic shielding by other ions and, hence, γi depends on the ionic strength
I (i.e., the concentration of electrical charge), which is

I =
1

2

X

i

z2i ci (B3:6‐10)

Here, zi is the charge of ion i. The sum is taken over all ions in the solution. Due to the square of zi,
multivalent ions contribute strongly to the ionic strength.

A simple expression for the activity coefficient in electrolyte solutions is given by the model of
Debye–Hückel (1923) by taking into account long-range electrostatic interactions between ions

lg γi =−A z2i
ffiffi

I
p

(B3:6‐11)
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where A is the parameter depending on aqueous solution on temperature T, and the dielectric con-

stant ε as

A= 1.82× 106 εTð Þ−3=2 (B3:6‐12)

This model provides good results only at very dilute concentrations, so a variety of improvements have

been made for more concentrated systems by Pitzer (1991).

3.2.4 Selected binary phase diagrams

3.2.4.1 Mixed crystals with nearly ideal solid solution

Mixed bulk crystals and epitaxial layers are of highest importance, such as the semi-

conductor alloys Ge1–xSix, In1–xGaxAs, Ga1–xAlxN, and Cd1–xZnxTe, for example. By

changing the composition the lattice parameter and electrical qualities (width of band

gap) can be adjusted. Usually, a high compositional homogeneity (x – uniformity) is

required, especially, when mixed crystalline substrates or detectors are used. On the

other hand mixed crystals with linear variation of the “lattice constant” (called delta

crystals) have enhanced mechanical stability (Ginzburg–Landau theory) and are ap-

plicable as lenses in X-ray optics. The difficulty of this concept is achieving linear vari-

ation of the lattice constant with high accuracy and without loss of single crystallinity.

In both areas, mixed crystals with nearly ideal solution behavior are favored.

An ideal solution A–B means a system with complete miscibility in both the liquid

and solid phase within the whole composition range, 0 < x < 1. In the low pressure T–x

projection of such a phase diagram, there are the three fields, liquid, liquid + solid,

and solid, separated by two boundaries known as the liquidus L and solidus S

(Fig. 3.6). Using the above derived thermodynamic knowledge, the S and L courses of

such ideal systems can be calculated analytically. With respect to the component i = B

added to the matrix component A, the equilibrium between solid (S) and liquid (L)

phases is given by the equality of the chemical potential of each phase from eq. (3.29)

μBS xBS, Tð Þ= μBL xBL, Tð Þ (3:51)

μ0BS +RT ln xBSγBS = μ0BL +RT ln xBLγBL (3:52)

which, after adjusting, becomes

RT ln
xBSγBS
xBLγBL

� �

= μ0BL − μ0BS = Δμ0B = Δh0B − TΔs0B = 0 (3:53)

where hB0 and sB0 = hB0=TBm are the intensive standard enthalpy and entropy of the

added pure component B with melting temperature TBm , respectively. Hence, eq. (3.53)

is then
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ln
xBSγBS
xBLγBL

� �

=
Δh0B
R

1

T
−

1

TBm

� �

(3:54)

Since the solutions in both phases are ideal, the activities γBS,L are ≈1 and eq. (3.54) is

transformed into the van Laar equation:

xBS

xBL
= k0 = exp

Δh0B
R

1

T
−

1

TBm

� �
 �

(3:55)

where k0 is the (thermodynamic) equilibrium distribution (segregation) coefficient of

added component B in matrix A. Note that in the case of mixed crystal. Ge(A)–Si(B) is

k0Si ≥ 1 for all values of the mole fraction xSi, as demonstrated by the insertion in Fig. 3.11.

Using xA S,L + xB S,L = 1, the equation of the liquidus is

xAL exp
Δh0A
R

1

T
−

1

TAm

� �
 �

+ xBL exp
Δh0B
R

1

T
−

1

TBm

� �
 �

= 1 (3:56)

and, the equation of the solidus is

Fig. 3.11: T–x projection and k0(x) course of the near ideal system Ge–Si. Full lines were calculated, dashed

line is experimental (with permission of Springer Nature).
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xAS exp −
Δh0A
R

1

T
−

1

TAm

� �
 �

+ xBS exp −
Δh0B
R

1

T
−

1

TBm

� �
 �

= 1 (3:57)

For instance, let us calculate the T–x projection of the system Ge–Si by applying eqs.

(3.56) and (3.57). The near-linear variation of the lattice constant with composition

(Vegard`s rule) leads us to expect a good solubility between both material partners. After

replacing xA L,S by (1–xB L,S) and inserting Δh°Ge = 32 kJ/mol, Δh°Si = 50 kJ/mol, TmGe =

1210 K, and TmSi = 1685 K, quite a good agreement with the experimental data is obtained

(Fig. 3.11). However, as can be seen, the experimental liquidus curve is somewhat above

the calculated one, indicating that the solutions are not quite ideal. Indeed, several pre-

cise treatments within the literature provided the evidence that the liquidus and solidus

data could be best approximated when the activity coefficients γB L,S in eq. (3.54),

instead of unity, are expressed by the interaction parameters ΩL = 1.615 kcal/g-atom and

Ω S = 1.210 kcal/g-atom, as in eqs. (3.47) and (3.48).

The most important challenge for the crystal grower is to manage mixed crystals

AxB1–x or AxB1–xC etc. with homogeneous composition throughout their whole length

and diameter. The difficulty lies in the high mutual solubility of the constituting compo-

nents over the whole mole fraction causing a permanent effect of segregation during

the growth process, due to the marked difference between the liquidus and solidus tem-

peratures in their phase diagrams (see Fig. 3.6). As a result, throughout the directional

crystallization, both the solvent and solute are gradually enriched in the remaining

melt and increasing crystal parts. Additionally, the appearance of a massive diffusion

boundary layer at the propagating solid–liquid interface always entails the danger of

constitutional supercooling (lecture parts III and IV). In this context, the exact knowl-

edge of the segregation coefficient, introduced for an ideal mixed system by eq. (3.55), is

of particular importance as will be discussed in Section 3.2.4.4.

3.2.4.2 Systems with congruent melting compounds

3.2.4.2.1 Stoichiometry and region of homogeneity

As mentioned in Section 3.2.3 (eq. (3.43)), strong mutual bond energies between the com-

ponents A and B but weak bonds inside the both partners A–A and B–B result in lower

interaction energy between A and B so that the interaction parameter becomes Ω < 0. In

other words, the material system reduces the inner energy when each atom surrounds

the other kind of atoms. One realization possibility is the ideally mixed system with ran-

domly (disordered) arranged atomic structure as we presented in Section 3.2.4.1. However,

with increasing attraction between the unlike atoms, a disorder–order transition with

formation of an intermediate phase (compound AB) can take place where the atoms oc-

cupy well-defined (ordered) lattice sites. Figure 3.12a shows such a situation. Mostly, inter-

mediate phases are characterized by enhanced covalent and ionic bond percentages.

Therefore, the free energy, including entropy and enthalpy, of such phases are typically
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low, causing their high stability. Intermediate phases apply to many important dielectric

(e.g., alkali halides, corundum, and garnets) and semiconductor compounds (e.g., III–V,

II–VI, and IV–VI).

A completely ordered compound structure exists only if the ratio of the number of

atoms A and B is equal to the ratio of relatively small integers υA and υB. The com-

pound can then designated by the formula AυABυB. Considering a solid phase consisting

of A and B partners, the following chemical reaction for the same integers υA = υB is

υAAS + υBBS ! ðAνA
BνB

ÞS (3:58)

Such examples within the class of semiconductors are GaAs, InP, GaN, ZnSe, and

CdTe. Equally proportioned dielectric compounds are NaCl, CsCl, and LiF. Further,

there are many compounds of unequal proportions showing different integers, such

as υA = 2υB (e.g., Mg2Si) or υA = 2/3υB (e.g., Bi2Te3 and Al2O3). Also, multiple compounds

consisting of more than two basic elements are composed of unequal integers like

LiNbO3 or La3Ga5SiO14, for example.

All these compounds have one thing in common: they are of stoichiometric com-

position (see Fig. 3.12a). Stoichiometry expresses the law of conservation of mass

Fig. 3.12: Sketches to illustrate a compound stoichiometry AB (a) and the formation of the width of an

existence region (b) by the tangent constructions between chemical potential minima of pure components A
and B and an related compound AB at a given temperature.
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where the total mass of the reactants equals the total mass of the products. Thus, stoi-

chiometry denotes a strong chemically defined singular composition. Unfortunately,

in the crystal growth literature, very often an incorrect description is used, where-

upon a given compound of “different or various stoichiometry” can be crystallized. Of

course, correctly it should be “different deviations from stoichiometry” (see below).

Figure 3.12b shows the scheme of the related µ(x) curves for all stable solid phases,

AS, ABS, and BS in a binary system, with a formed compound at a given temperature.

Note, the minimum of the chemical potential equated to the free molar energy of the com-

pound µAB = gAB is not pointed but shows a comparably broad (dashed) area. This is due

to some sideward contacts of the two equilibrium tangents with the compound potential

curve µAB(x). This means that the compound AB exists over a certain x region, marked in

Fig. 3.12b, by the total width δxtot and referred to as the region of existence for each given

temperature, often also named homogeneity region. As a result, the boundaries of the ho-

mogeneity region are deviated from stoichiometry by the distance δxA and δxB, respec-

tively. Such a situation is a characteristic feature of most compounds showing certain

solid solubility of both elementary components. From the figure, it follows that δxtot
would decrease with the tapering of the µAB (x) curve, expressing an increasing attraction

of the opposite compounds or rather the bond energy between them. The appearance of

a homogeneity region can be explained thermodynamically through the principle of

Gibbs free energy minimization [see Section 2.1; eq. (2.2)], whereupon the entropy part S

strives to increase G by inducing a certain degree of disorder. This is realized by introduc-

ing some imperfections in the form of intrinsic (native) point defects, established by addi-

tion of excess A or B atoms into the AB compound lattice. For that, three implementation

scenarios are available: (i) interstitial positioning of the excess atoms, (ii) vacancies within

the sublattice of the shortage component, and (iii) exchange of a lattice place by an oppo-

site atom, designated as antisite (more details will be given in the lecture part IV). In re-

sult, the compound AB proves to be a partly disordered solid phase, existing not only at

stoichiometric composition but within a region of existence, bordered by solidus lines, i.e.,

the courses of solubility limits for A or B in AB at given temperature and pressure.

Figure 3.13 presents the scheme of a T–x projection of a binary eutectic system with

a AB compound that has a magnified existence region δxtot, with deviations of the soli-

dus curves from stoichiometry δxA and δxB. The µ–x projections for a liquid and a solid

state at given temperatures are added left. Both solidus and liquidus are hyperbolae

with asymptotes intersecting at one point on the compound axis. Due to the consistency

of both liquid and solid composition, this singularity is denoted as congruent melting

point Tcmp (CMP). Considering a congruent crystallization process, the solid compound

is formed by the reaction of two liquid components, and eq. (3.58) becomes

υAAL + υBBL ! ðAνA
BνB

ÞS (3:59)
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The T–x figure of the homogeneity region need not be symmetrical, and as a conse-

quence, the maximum at which solid and liquid are identical does not necessarily meet

at the stoichiometric composition. This is due to the differences in the energies of forma-

tion of the point imperfections. As a result, the minimum of the chemical potential (free

molar energy) of the compound µAB is shifted to the side of that imperfection, the forma-

tion of which requires the least energy. In Fig. 3.13, this is assumed for the B-rich side.

Hence, the degree of deviation of CMP from stoichiometry Δx corresponds to the intrinsic

disorder. For instance, in GaAs, the CMP is deviated to the As-rich side at ΔxAs ≈ 8 × 10
–3 at

% (1018 excess As atoms per cm3) and in CdTe, the CMP is located at Te excess of ΔxTe ≈ 1 ×

10−3 at % (1.5 × 1017 cm−3). Consequently, the experimental achievement of a stoichiomet-

ric compound crystal by crystallization is always associated with the phenomenon of seg-

regation due to the compositional difference between solidus and liquidus, outside the

CMP. Two possible practical cases are inserted in Fig. 3.13 by green arrows. When the

crystallization starts right of the CMP, e.g., at liquid composition xL2, the resulting solid

composition is always located outside the stoichiometry, like here at xS2. As a result, the

AB compound would contain an excess of B. On the other hand, to achieve a stoichiomet-

Fig. 3.13: Sketches of a widened existence region with congruent melting point (CMP) of a virtual compound

AB within a binary eutectic system and two µ–x projections for the liquid and solid state, to illustrate the

characteristic deviation of CMP from stoichiometry and the retrograde course of the boundary (solidus) of

the existence region. Green arrows show the crystallization path on both sides of the existence region.

Stoichiometry is only met by the left path (L - liquidus, S - solidus).
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ric AB compound of xSAB, the crystallization should start left of CMP at xL1. Clearly how-

ever, without thermodynamic in situ stabilization, this starting composition is not kept

constant during an unidirectional solidification process but would drift more and more

toward the excess of A by shifting down along the liquidus course.

The extension of the homogeneity region δxtot depends on the interaction energy

between the A and B atoms as well as on the formation enthalpies of nonstoichiometry-

related point defects. All this, together, leads to very differing and mostly asymmetric

shapes of the homogeneity region. Due to the decreasing solubility with decreasing tem-

perature, down to 300 K, the solidus curves of the homogeneity region are retrograde.

This fact is of great importance for the nucleation of precipitates of the excess component

A or B during the cooling down process of an as-grown compound crystal (ch. 5.2.4).

Considering the degree of deviation from stoichiometry at a given temperature ± δx

(see Figs. 3.12b and 3.13), the correct expression of eq. (3.59) is then

υA ± δxAð ÞAL + υB ∓ δxBð ÞBL ! ðAνA ± δxA
BνB ∓ δxB

ÞS (3:60)

Note, a compound with formula AνA
BνB + δxB

would refer to the deviation of the whole

existence region from stoichiometric composition toward B excess as is really the case

in SnTe and GaAs, for example (see Fig. 3.14a and c).

Figure 3.14 summarizes some forms, extents, and numbers of existence regions in

selected binary and quasi-binary systems. Semiconductor compounds (a–c) are char-

acterized by relative small homogeneity regions. In contrast, there are oxides and in-

termetallic systems with large extensions on either side of the stoichiometry, like

LiNbO3 (d) or AlNi (e). Even the intermetallic system Al–Ni is an instructive example

of the formation of numerous subcompounds, in addition to AlN such as Al3Ni2, Ni5Al3,

and Ni3Al with incongruent melting points (see Section 3.2.4.3) and relatively wide ex-

istence regions. An example of a complex intermediate compound is the quasi-binary

system Cu2S–In2S3 (f). The homogeneity region of CuInS2 is subdivided into three solid

phases ξ, δ, and γ, to be passed through during cooling down – a real challenge for

the crystal growth of this interesting photovoltaic material.

As was already mentioned above, the shape of the homogeneity region is the re-

sult of the energetic superposition of all intrinsic point defects at a given temperature.

Of course, the addition of foreign atoms as dopants or impurities of an adequate con-

centration does slightly affect the configuration of the existence region too. Since at

high temperatures, near to the melting point, intrinsic and extrinsic point defects are

isolated and usually electrically charged, the width of the existence region corre-

sponds to the principle of electrical neutrality of the crystal.

Table 3.1 compiles some maxima of phase extents, i.e., the total width δxtot of se-

lected compounds (compare with Figs. 3.12–3.14). The higher the defect formation en-

ergies, the smaller are δxtot typically for semiconductor compounds. For physical and

practical requirements, the mutual conversion of the mole fractions (moles per cent)

into the concentration of atoms (molecules) [C] per cm3 is feasible by the equation
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Fig. 3.14: Selected real existence regions of quasi-binary systems with solely (a–d), diverse (e) and solid

multiphase existence regions (f) (with permission of Wiley and Sons (a–c), open accesses by MDPI (d,e), and
permission of Elsevier (f)).
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C½ �= δxtot or δxð ÞNAρ

M
cm−3
� �

(3:61)

(NA – Avogadro’s constant in per mol, ρ – density of the compound at given tempera-

ture in g/cm3, and M – molecular mass of the compound in g/mol). Both total extension

of the existence region δxtot and deviations from stoichiometry δx are given in dimen-

sionless mole fraction.

3.2.4.2.2 The problem of incongruent evaporation

Above the surface of an ideal mixed melt A–B, the total vapor pressure pAB is equal to

the sum of the partial vapor pressures of the two constituents A and B, given by Raoult’s

relations pA = pA°xA and pB = pB°xB if no other gases are present (pA° and pB° are the equi-

librium vapor pressures of the pure components). Once the vapor phase consists of both

components in an ideal solution, the total vapor pressure can be determined by combin-

ing Raoult’s with Dalton’s law of partial pressures to give (Fig. 3.15a)

pAB = poAxA + poBxB = poAxA + poB 1− xAð Þ (3:62)

where the summands represent the partial vapor pressures pA = p°AxA and pB = p°BxB.

Many pairs of liquids and vapors show no uniformity of attractive forces. They form

nonideal but real mixings. Raoult’s law can still be adapted by incorporating the coeffi-

cients of fugacity ϕi and activity γi for the vapor and liquid, respectively (see also Sec-

tion 3.2.1). Then, the real partial pressure of a given element i is pi = pi°ϕi xi. Figure 3.15b

and c shows two real mixed material systems, with deviations of the pressure curves

from ideal cases being exemplary for many multicompound materials that are processed

in crystal growth. Negative deviations from Raoult’s law arise when the forces between

the constituents in the mixture are stronger than the forces between pure components

(Fig. 3.15b). On the other hand, a positive deviation occurs when the attraction between

similar components is greater than between the dissimilar ones (Fig. 3.15c). Then, the

Tab. 3.1: Maximum widths of existence regions in selected material (with permission of Springer Nature;
supplemented values are public domains of Wikipedia).

Compound GaAs✶ CdTe PbTe MnSb✶ LiNbO MgAlO

✶ AlNi CuInS

max. δxtot  × 
–

 × 
–

 × 
–

 × 
–

 ×−  ×−  ×−  × 
–

T at δxtot (°C) , ,   , , , 

ρ (g/cm) . . . . . . . .
M (g/mol) . . . . . . . .
[C]max (cm

–)  × 


 × 


 × 


 × 


 × 


 × 


 × 


 × 


✶The whole existence region is completely deviated from stoichiometry toward A-side (MnSb) or B-side
(GaAs and MgAl2O3)
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vapor over the mixed liquid is enriched by the most volatile component – a very often

case at crystal growth of compounds.

It is usually the case that the pi° values are quite different and, thus, the total pres-

sure is essentially dependent on the partial pressure of the most volatile component

quasi over the whole composition xi. This is the case in the III–V systems. For instance,

the partial pressures of arsenic pAs2 , pAs4 and phosphorous pP2 , pP4 along the liquidus

are determined over nearly the whole Ga–As and In–P melt compositions. For instance,

in the system Ga–As, the intersections with the partial gallium pressure pGa are very

closed to the pure gallium (Fig. 3.16). Therefore, an uncovered Ga–As melt within a cru-

cible standing in vacuum would dissociate by intense evaporation of the arsenic part,

leaving behind nearly elementary liquid gallium. Thus, the Czochralski growth of GaAs

(and other related compounds consisting of both high- and nonvolatile components) only

became possible when the melt surface is covered by a liquid encapsulant (e.g., B2O3), as

was successfully shown for the first time by Mullin et al. in 1965. Additionally, it is advis-

able for the growth vessel to fill by a pressurizing inert gas.

Fig. 3.15: Partial and total pressure curves in ideal (a) and real mixed systems with stronger attraction

between the differing components (b) and inside the identical components (c). (the portraits of J. Dalton
and F.M. Raoult are public domains; with permission of Springer Nature (b) and Elsevier (c).)
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In comparison, there are numerous systems in which all consisting components show

high-volatile partial pressures, like II–VIs. In Fig. 3.16, the p–x – phase projection with

the partial pressure curves of pCd and pTe2 along the liquidus of Cd–Te are presented.

While pCd dominates on the Cd-rich side, pTe2 controls the Te-rich side. The intersec-

tion point of both curves determines the composition of congruent evaporation xV = xL

which is distinct-deviated from stoichiometry in the direction of Te excess (at xTe ≈

50.7 at % ≈ 1020 excess Te atoms per cm3). This crossing point coincides with the mini-

mum of the total pressure curve and is designated as pmin (see the magnified detail

graph in Fig. 3.16, right). It is noteworthy that at this point, the Cd–Te melt evaporates

in its own composition without decomposing. Unfortunately, the xL = xV equilibrium

does not coincide with stoichiometry and lies significantly outside the CMP. One of

the rare compounds with near equality between both CMP and pmin (xS = xL ≈ xV = xL)

proves to be SnTe. However, its whole region of homogeneity is markedly deviated

from stoichiometry in the Te direction (Fig. 3.14c).

Table 3.2 compiles the deviations of the congruent melting point and pmin from

stoichiometric composition of some selected semiconductor compounds. The data

demonstrate the serious problem of exact control of stoichiometry and the starting

melt composition during the crystal growth from melt. As a result the as-grown crys-

tals are enriched by native point defect contents occasionally exceeding markedly the

Fig. 3.16: p–x projections of the partial pressures over the liquidus L in the T–x projection of the systems

Ga–As and Cd–Te, showing the deviation of minimum total pressure from stoichiometry (with permission
of Elsevier).
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equilibrium concentration at stoichiometric composition. Therefore, during cooling

down, the excess atoms agglomerate in precipitates as second phases due to the retro-

grade solidus (compare with Fig. 3.13).

The incongruent evaporation does shift the melt composition away from the weighed

near-stoichiometric feedstock even in evacuated and sealed ampoules, as they are used

in Bridgman growth configurations. Usually, the pieces of the solid starting charge can-

not completely fill the whole ampoule volume. Consequently, during the melting pro-

cess, the feedstock slumps down, leaving an empty vacuum space over the molten mate-

rial (Fig. 3.17). Next, the melt evaporates incongruently fills this space by the most

volatile gas component (e.g., the gas phase of CdTe near its melting point is constituted

of 99.6% of Cd species). As a result, the number of atoms of the high-volatile component

evaporating into the vapor phase leaves an equal number of nonvolatile atoms within

the melt in excess. Using the ideal gas equation, the excess concentration Nex per cm
3

can be estimated as

Nex =
pANA

RT

VV

VL
(3:63)

where pA is the partial pressure of the high-volatile component A, NA the Avogadro’s

constant, R the universal gas constant, T the absolute temperature, and VV/VL the ratio

of the volumes of the melt and free gas inside an ampoule. At constant cross section,

the VV/VL ratio can be replaced by hV/hL with the heights hV and hL being of melt and

gas sections, respectively. To go back to the example of molten CdTe in an evacuated

ampoule with constant diameter at temperature T = 1100 °C, i.e., some degree above

Tab. 3.2: Mole fraction position of congruent melting point xB(cmp) and total pressure minimum xB(pmin)

relative to the stoichiometric composition x = 0.5 in selected semiconductor compounds (with permission of
Elsevier, Springer Nature, Research Signpost, and by open access of IntechOpen).

Compound ZnSe ZnTe CdS CdTe GaAs InP PbTe SnTe

CMP (°C)        

xB (CMP) . . . . . . . .
pmin (MPa) . . . . ~– ~– ~– .
xB (pmin) . . . ~ ~ ~ ~.

In all listed compounds, the stoichiometric composition is x = 0.5.
Data from: H. Wenzl et al.,J. Crystal Growth109 (1991) 191; R. Brebrick, Comp. Phase Diagr. Thermochem. 34
(2010) 434; N. Yellin, S. Szapiro, J. Crystal Growth 73 (1985) 77; J. Greeberg, Thermodynamic Basis of Crystal
Growth (Springer 2002); V.L. Zlomanov, A.V. Novoselova, p-T-X-diagramy sostojanija sistem metal-chalkogen
(Nauka, Moskva 1987); P. Rudolph in M. Isshiki (ed.), Recent Development of Bulk Crystal Growth, Ch.5 (Res.
Signpost 1998) p. 127; E. Rogacheva in: A. Innocenti, N. Kamarulzaman (eds.), Stoichiometry and Material Science,
Ch. 5 (Intech 2012) p. 105.
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the congruent melting point, the Cd partial pressure is roughly 5 × 10–2 MPa around

two magnitudes of order more than that of tellurium (see detail graph in Fig. 3.16,

right). As a result, the free ampoule volume is enriched by the vaporized Cd atoms.

Thus, using eq. (3.63), the resulting residual Te excess in the melt is of the order of

Nex ≈ 5 × 10
18 hv/hL cm

−3. In practice, the values of the height ratios lie between 0.3 and

0.2, which results in Te excess concentrations in the melt volume and, thus, at the be-

ginning in the growing CdTe crystal of about 1018 to 1019 cm−3. Due to the continuous

reduction of hL during the directional solidification, a further slight increase of the Te

excess concentration can be expected as long as the partial Cd pressure does not drop

with increasing deviation from stoichiometry. It should also be mentioned that the

effect of segregation during directional solidification promotes an additional Te en-

richment in the melt, caused by the less tellurium solubility in the solidifying CdTe

compound than in its melt (see also Fig. 3.13).

An additional situation of component loss is illustrated in Fig. 3.17 (right). When

sealed ampoules are replaced by covered containers, the most volatile component can

leave the gas volume over the melt by diffusion through small gaps and the container

Fig. 3.17: Two cases of directional solidification of compounds with incongruent evaporation, leading to

the drift away from stoichiometric composition due to empty ampoule space (a) and container leakage (b)

(with permission of Elsevier and Izd. Nauka Russ. Feder).
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wall. The rate of mass transfer JNi through a porous container wall (e.g., made of

graphite) can be estimated by the added relation.

Summarizing, the incongruent evaporation proves to be one of the general ther-

modynamic problems at crystal growth of multicomponent materials. Therefore, the

finding out of proper measures for in situ stoichiometry control turns out to be a car-

dinal action of crystal growth mastering. Roughly approximated, in Bridgman/VGF

growth, a simple measure is the ab initio admixture of the excess content of the disso-

ciating component to the feedstock material by using eq. (3.63). However, the mainte-

nance of a quasi-steady near-stoichiometric situation during the whole growth pro-

cess proves to be a much greater challenge.

3.2.4.2.3 The control of stoichiometry via in situ vapor–liquid–solid-phase

equilibration

Compounds of exact stoichiometric composition show excellent, even singular, phys-

ical properties due to the minimum intrinsic point defect and dislocation content.

Therefore, it is a long-term goal to grow such crystals of extraordinary qualities.

However, it proves to be a big technological challenge, above all due to the complex-

ity of exact feedstock weighing (see Fig. 3.17) as well as the effect of segregation out-

side the congruent melting point, where the phase equilibrium splits into liquidus

and solidus (see Section 3.2.4.2.2). Further, as is shown in Fig. 3.14, the CMP does not

coincide with stoichiometry. Thus, the growth of compound crystals with exact stoi-

chiometric composition from the melt requires a certain off-stoichiometric melt

composition to meet the intersection point of solidus with the stoichiometric compo-

sition, as is sketched by the left crystallization path in Fig. 3.13 (Cd-rich for CdTe, Ga-

rich for GaAs, and Nb2O3-rich for LiNbO3, for example). The difficulty is now to keep

constant the related melt composition during the whole crystallization process. As

we demonstrated in Section 3.2.4.2.2, this proves to be impossible in growth arrange-

ments with quasi open or leaking containers and, even in closed ampoules without

any counteraction.

Actually, Section 3.2.4.2.2 mentioned both variants of (i) liquid encapsulation of the

melt surface and (ii) intentionally off-stoichiometric feedstock weighing as applied to

the growth of semiconductor compounds by the liquid-encapsulated Czochralski (LEC),

vertical Bridgman (VB), and vertical gradient freeze (VGF) techniques. However, the

most precise control of stoichiometry proves to be the steady in situ maintenance of the

equilibrium vapor phase pressure over the liquid phase, generated by an extra source

of the most volatile component, which is located at the appropriate vaporization tem-

perature. For that, the study and linkage of the T–x and p–T projections arises as an

essential thermodynamic precondition. Of course, one should have the most detailed

possible information about the phase diagram of the given material system. In the fol-

lowing, such a handling will be demonstrated by an example.
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Figure 3.18 shows the pAs–T and T–x projections of the system Ga–As, whereby pAs in

Fig. 3.18a presents the total arsenic pressure, being the sum of the partial pressures of the

dominating species As2 and As4 (V, L and S stand for vapor, liquid, and solid). The homo-

geneity range of the compound GaAs, according to the newest calculations and experi-

mental experiences, is asymmetric with regard to the stoichiometric composition and

completely deviated toward As-rich concentrations (Fig. 3.18b). Also, the CMP at 1238 °C is

located on the As-rich side, in equilibrium with a vapor pressure of ~0.2 MPa (2 atm).

Thus, in order to ensure the crystal growth near the CMP composition of xAs ≈ 0.50008,

the vapor phase pressure above the melt must be kept constant at 0.2 MPa. From the

pAs–T projection, it follows that such a pressure corresponds to the arsenic tempera-

ture TAs ≈ 610 °C on the SAs + VAs curve (arrow 1). On the other hand, the “left” solidus

arm of the existence region of GaAs meets the stoichiometry at about 1150 °C, corre-

sponding with the liquidus mole fraction of xL ≈ 0.25. The translation into the pAs–T dia-

gram results in a corresponding arsenic equilibrium pressure of pAs ≈ 10
–2 MPa at TAs ≈

500 °C (arrow 2), suggesting growth near stoichiometric GaAs crystals. All higher arsenic

pressures would lead to an arsenic excess δxAs within the GaAs compound. At the same

time, at all parts inside the growth container, the temperature must be kept higher than

TAs to avoid condensation on the walls. Thus, by varying the arsenic pressure in the

enclosure, the composition of the melt and hence that of the solid can be fixed.

Fig. 3.18: Combination of p–T (a) and T–x (b) projections of the system Ga–As for estimation of the

equilibrating pressure and temperature of an As extra source to obtain stoichiometric GaAs (with
permission of Elsevier (a) and of Springer Nature (b)).
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Today, growth from a nonstoichiometric As-rich melt is preferred for a number of rea-

sons, such as generation of the mid-gap donor EL2 (AsGa antisite) as a prerequisite for

semi-insulating properties, avoidance of twin formation during crystal growth, and bet-

ter homogeneity of electrical properties. However, as was analyzed for some other com-

pounds, a near-stoichiometric growth also offers certain advantages, such as minimiza-

tion of the content of intrinsic point defects, second-phase particles, dislocation density,

and dislocation cell patterns. The main methodical problem of stoichiometric GaAs

growth proves to be the correspondingly marked excess of gallium in the melt that

would require an effective artificial mixing to avoid constitutional supercooling at the

growing interface. More details will be given in the lecture parts III and IV.

It is noteworthy that an exact three-phase equilibrium according to the above

phase projections can only be obtained when both the solid phase boundary of the

growing crystal and the adjacent melt simultaneously and contact the vapor phase.

Such melt growth methods are horizontal Bridgman (HB) technique and horizontal

zone melting. In fact, the first melt growth experiments with vapor equilibration

were carried out with semiconductor compounds (CdTe, GaAs, InAs, GaP, etc.) by HB

arrangements, sketched in Fig. 3.19a. In this method, the shoulder-free crystal, melt

and, thus, also the growing melt–solid interface are in direct contact with the equili-

brating vapor phase generated by an extra source of volatile element (see Fig. 3.19a).

Whereas the growth boat is placed in a selected temperature gradient near to the AB

melting point, named high-temperature heating region, the source of the volatile com-

ponent A or B is located within a low-temperature heating section, to deliver the equi-

librium pressure at the appropriate temperature. Due to the direct contact with the

vapor phase, the required liquid concentration is situated right next to the melt–solid

interface. In addition, the direct contact between the saturated vapor and the as-

grown free crystal surface seems to be an effective condition for in situ ingot anneal-

ing within the atmosphere of excess component.

As compared to this, in the vertical melt-growth arrangements of unidirectional

crystallization, like the VB, VGF, and Kyropoulus techniques, the situation is some-

what differing due to the missing direct contact of the melt–solid interface with the

gas atmosphere (see Fig. 3.19b). In this case, the crystallization front is totally covered

by the melt column. That means, to obtain the required melt composition at the grow-

ing interface, the vapor pressure must be adapted to the local A:B relation, depending

on the degree of vapor–liquid separation at the melt surface, the diffusion- and con-

vection-driven concentration level within the melt, and the melt–solid segregation at

the propagating interface. As is well known, the segregation effect causes an enrich-

ment of the excess component in the form of a diffusion boundary layer, the height

and width of which are dependent on the growth velocity and stirring degree of the

melt (see lecture part III). The related concentration profile is sketched in Fig. 3.19b. A

quasi-balanced situation is given by the functional dependence between the growth

velocity v and the above listed parameters as
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v ffi DL

δD

cVexk
VL
ex

c
L0
ex

− 1

 !

(3:64)

where DL is the diffusion coefficient of the excess species within the melt, δD the thick-

ness of diffusion boundary layer at the melt–solid interface, cVex the concentration of

excess component in the vapor phase above the melt surface delivered by the extra

source, kVLex the separation coefficient of the excess component at the melt–vapor in-

terface, and c
L0
ex the concentration of the excess component directly at the growing

melt–solid interface with location coordinate z = 0 (derivation of eq. (3.64) is expli-

cated in the Spec box 3.7). It must be pointed out that for obtaining a stoichiometric

composition in the growing crystal, the value c
L0
ex is fixed by the desired liquidus-

solidus balance according to the given T–x phase projection so that cSex = kLsexc
L0
ex with

kLsex the segregation coefficient of the excess component usually being significantly less

than unity due to the large difference between liquidus und solidus along the bound-

aries of the existence region (see Fig. 3.14).

Fig. 3.19: Schemes of horizontal (a) and vertical (b) Bridgman/VGF growth of compounds with

equilibrating extra source to control near-stoichiometric crystal composition. The axial temperature and

concentration profiles are added.
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Spec box 3.7: Growth velocity at stoichiometry-controlled vertical Bridgman technique

In order to achieve the exact stoichiometric composition of a growing crystalline compound AB, there
should be no any A or B excess concentration in the solid so that cSex ≡ δx = 0. Considering the effect of

segregation, the excess concentration A or B in the melt directly at the interface with current location

coordinate z = 0 must be c
L0
ex , in agreement with the balanced liquidus point in the phase diagram (see

Figs. 3.13 and 3.18). That means the melt–solid segregation coefficient of the excess component be-

comes kLSex = cSex=c
L0
ex (in mole fraction = δxsex=δx

L
ex, with δ the deviation from stoichiometry xAS = xBS =

0.5). For a striven stoichiometry, the value δxBL must agree with the liquidus position, equating the

stoichiometric solidus value δxBS = 0.
As is well known, at a propagating front of crystallization, a diffusion boundary layer is formed. That

means, the excess component A or B is enriched in front of melt–solid interface in the form of an expo-

nentially sloped course. Thus, the value of c
L0
ex denotes the height of the diffusion boundary layer di-

rectly at the interface. Its thickness δD is determined by the degree of convection in the melt. Its esti-

mation as a function of the mass transport regime within the fluid phase is described in many

textbooks. Due to the complexity of the exact definition, it is mostly used as a variable range of func-

tions. In order to estimate the height and, therefore, the stoichiometry in determining value of c
L0
ex , we

use the following relation from textbooks:

c
L0
ex ffi

cLex

kLSex + 1− kLSex
� �

exp −
vδD
DL

� 
h i (B3:7‐1)

where cLex is the mean concentration of the excess component within the melt far away from the diffu-

sion boundary layer, v the crystallization velocity, and DL the diffusion coefficient of the excess compo-

nent in the melt. If we look at the solidus course of any magnified existence region, such as in

Fig. 3.14, it is immediately striking that the slope is significantly deeper than that of the liquidus. As a

result, the segregation coefficient kLSex is much less than unity and can be neglected. Therefore, at such

first approximation, eq. (B3.7-1) is simplified as

c
L0
ex ffi cLex exp

vδD
DL

� �

(B3:7‐2)

Practically, the amount of cLex is determined by the weighing of the feedstock and nearly equivalent

with mole fraction of xL ≈ 0.5 (note, the accurate value is then adjusted by the partial antipressure of

the extra source during the growth process). To find out this pressure for a VB arrangement, one must

estimate the V–L–S chronology of the concentration as sketched in Fig. 3.19b. First, the composition

difference between the melt and vapor is given by the separation ratio kVL = cLex=c
V
ex Assuming B as

excess component becomes kVLB = cLB=c
V
B ≡ xLB=x

V
B . In the case of an ideal mixed material system with two

components A and B, the concentration in mole fraction of B evaporated in the free volume can be

expressed from Raoult’s relation as

xVB =
pB

pB + pA
=

pB
ptot

(B3:7‐3)

with the partial pressures pB being calculable by using the empirically obtained relation ln

pB = ln C −ΔHv=RT , where C is an experimental constant, ΔHv the heat of vaporization of the liquid, and

R the universal gas constant. Note that the gas phase often consists of vapor species in molecular form,

such as As2 and As4, for example. In such a case, the notation of the partial pressure in eq. (B3.7-3) must

be replaced by npBn , with n being the number of atoms that form a molecular species.
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Assuming that the vapor phase composes almost dominantly of the species of the volatile compo-

nent B (xVB ≈ 1) and the melt phase of nearly the half (xLB ≈ 0.5), the relation kVLB = xLB=x
V
B becomes ≈ 0.5.

The concentration of excess component in the vapor is roughly estimated via ideal gas rule,

cVex =
pexNA

TR
(B3:7‐4)

where pex = pB is the partial pressure of the volatile excess component that is produced in the extra

source, T the total temperature of the gas phase, NA the Avogadro’s constant, and R the universal gas

constant.

Next, the mass balanced crystallization velocity of the propagating melt–solid interface v is related
but directed in the opposite direction of the mass flow density of the excess component incorporating

into the growing crystal jS, which is equal to the sum of the mass flow density jL in the melt directly at

the interface and the flow –jD diffusing back from the enriched diffusion boundary layer into the melt

volume, given by the first Fick’s law DL ∂cLex=∂z (DL – diffusion coefficient of excess component in the

melt, z – coordinate perpendicular to the growing interface)

jS = jL + −jDð Þ (B3:7‐5)

cSex −vð Þ= c
L0
ex −vð Þ−DL

∂cLex
∂z

(B3:7‐6)

v cSex − c
L0
ex

� 


=DL
∂cLex
∂z

(B3:7‐7)

where c
L0
ex is from eq. (B3.7-1). By activating the equation toward v, the mass balanced crystallization

rate is given by

v =
DL

cSex − c
L0
ex

� 

∂cLex
∂z

(B3:7‐8)

Replacing cSex by k
LS
exc

L0
ex and assuming the concentration gradient at the interface to be a near constant,

the derivative can be expressed as

∂cLex
∂z

≈
c
L0
ex − cLex
δD

(B3:7‐9)

Setting all relations and approximations from above, i.e., kLSex − 1 ≈ − 1 and cLex = kVLexc
V
ex, after some

arithmetic, it becomes the growth velocity responsible for near-stoichiometric crystallization as

v =
DL
δD

kVLex cVex
c
L0
ex

− 1

 !

(B3:7‐10)

In order to prevent thermal and morphological instability at the growing melt–solid

interface in a given temperature gradient, the crystallization velocity must be fixed at

a constant undercritical value (see lecture part III) so that eq. (3.64), respectively,

(B3.7-10) can be adjusted toward cVex as

cVex =
c
L0
ex

kVLex

vδD

DL
+ 1

� �

(3:65)
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Usually, due to a favorable low temperature gradient at VB and VGF growth, the crys-

tallization velocity v has to be relatively low, in the range of 1–5 mm/h. The diffusion

coefficient in melt DL is around 10–5 cm2/s. The thickness of the diffusion boundary

layer δD depends on the mixing (convection) level in the melt, and is of the order of

some µm. Thus, the term within the bracket becomes nearly unity and eq. (3.65) can

be approximated as cVex ≈ c
L0
ex=k

VL
ex .

For practical reasons, it is reasonable to know the temperature of the extra

source, which can be estimated from the general temperature dependence of the par-

tial pressure around the stoichiometric composition ln pi =C1 −C2=T (taken from tabu-

lar material values) by linking it with the total pressure over the melt ptot as

Tex =
C2

C1 − lg
αxL

1+ xL α− 1ð Þ ptot
h i (3:66)

where C1 and C2 are material constants and α is the relative volatility of the partial

pressures of all components presented in the given material system. The detailed deri-

vation is given in Spec box 3.8.

The value of ptot depends on the temperature at the melt–vapor surface Tsurf,

which can be estimated for a two-component system A–B from the

Clausius–Clapeyron equation as

ptotAB = pTmAB exp −
ΔHV

R

1

Tsurf
−

1

Tm

� �
 �

(3:67)

where pTmAB is the pressure of the AB compound at its melting point Tm and ΔHv the

enthalpy of vaporization (see Spec box 3.8). The value of ΔHv can be estimated from

the slope of the congruent sublimation line (S = L) in the given p–T coordinates.

As an example, let us assume the growth of near-stoichiometric CdTe crystals by

the VB method with a Cd extra source (in reality, such experiments have been per-

formed by the author, together with his former team, and described in publications).

The scheme of the growth arrangement and related axial temperature distribution is

sketched in Fig. 3.20a.

It is noticeable that in contrast to Fig. 3.19, no temperature plateau along the melt

column but an increasing temperature course with a gradient of 8 K/cm was presented.

As a result, the melt surface temperature Tsurf was continuously decreasing during the

crystallization process due to the upward motion of the heater arrangement. In accor-

dance with this, the temperature of the Cd extra source Tex≡ TCd was also decreasing

with nearly the same cooling rate as the melt surface. At the same time, the starting val-

ues of TCd was determined by the positioning of the source reservoirs (their distance

from the bottom of the growth ampoule), sketched in Fig. 3.20a by the two positions 2

and 3. For the calculation of TCd cooling down from 1200 °C to 1092 °C, eqs. (3.66) and

(3.67) and the following quantities are used: lg pCd atmð Þ= 5.119− 5, 317=T , lg pTe2 atmð Þ=
4.719− 5, 960=T, α= pCd=pTe2 ≈ 2.5 at∼1100 °Cð Þ, ΔHv = 198.45 kJ=mol, pTmAB = pTmCdTe = 2.5
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atm. The mole fraction of the Cd-rich liquidus position that meets the stoichiometric

composition of the solid CdTe phase is xLB = xLCd = 0.49985, equaling a Cd excess of

δxCd = 1.5× 10−4 (see Fig. 3.14b).

Spec box 3.8: Extra source parametrization at stoichiometry-controlled melt growth

Assuming a binary system of ideal mixed melt A–B, the vapor pressure of which follows the Raoult’s

law. In order to obtain the equilibrium distribution of the most volatile component B between the melt

and the vapor, we adopt the Rayleigh equation for fractional distillation of ideal melt mixtures

xVB
xVA

=
xVB

1− xVB
=
pB
pA

xLB
1− xLB

(B3:8‐1)

where xVB and xVA are the mole fractions and pA and pB the partial pressures of the pure constituents A
and B in the melt (L) and vapor (V), respectively. Rearranging, eq. (B3.8-1) becomes

xVB =
α xLB

1+ α− 1ð ÞxLB
(B3:8‐2)

where α is the relative volatility pB/pA. Then, the partial pressure of B in an ideal mixture is given by

Fig. 3.20: Schematic arrangement of vertical Bridgman growth of CdTe with Cd extra source to study the

conditions for stoichiometric crystals (a), the required Cd source temperatures (b) and the related

measured free carrier concentration along the solidified fraction (c) (with permission of Elsevier).
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pBV = ptotAB xVB (B3:8‐3)

with ptotAB the total pressure over the A–B melt. Substituting eq. (B3.8-2) into (B3.8-3) yields

pBV = ptotAB
α xLB

1+ α− 1ð ÞxLB
(B3:8‐4)

The expression for the partial vapor pressure of a given component can be obtained from the

Clausius–Clapeyron equation in the general form of

lg pBV = C1 − C2=T = C1 −
ΔHV
RT

(B3:8‐5)

where ΔHV is the enthalpy of vaporization, R the universal gas constant, and T the total temperature

identical with the temperature of the extra source. C1 and C2 are material-specific constants listed in

tables. Combining eq. (B3.8-4) with eq. (B3.8-5) leads to the temperature of the extra source of the

volatile component B

Tex =
C2

C1 − log
α xLB

1+ xLB α− 1ð Þ p
tot
AB


 � (B3:8‐6)

where ptotAB depends on the temperature at the melt–vapor surface Tsurf. It can be estimated from the

Clausius–Clapeyron equation as

ptotAB = pTmAB exp −
ΔHV
R

1

Tsurf
−

1

Tm

� �
 �

(B3:8‐7)

Note, if more than two constituents are presented within the melt, as in pseudo-ternary or quaternary

mixed systems (see Spec box 3.2), one has to consider the relative volatilities of a given (excess) compo-

nent with respect to all other components in the melt. αB Að Þ= pB=pA, αB Bð Þ= pB=pC , . . ., αB ið Þ= pB=pi
have to be considered by modifying eqs. (B3.8-1)–(B3.8-7).

The resultant theoretical temperature course of the Cd source to maintain constant stoi-

chiometric composition along the whole crystal as function of the solidified fraction g is

shown in Fig. 3.20b by curve 1. Then, two experimental curves 2 and 3 are added. They

differ in terms of the starting values of the Cd source, TCd = 895 °C and 855 °C, respectively.

Whereas the experimental curve 2 matches the theoretical program quite well and inter-

sects the calculated curve 1 at g = 0.6, the curve 3 is below curve 1 during the whole crys-

tallization process, corresponding to an off-stoichiometric growth of a slightly tellurium-

rich crystal (see Fig. 3.20b). In fact, the analysis of the free carrier concentrations along

the undoped as-grown crystal with such Cd source program 3 yielded a continuous p-type

conductivity, characteristic of a Te-rich point defect situation (Fig. 3.20c). In contrast, at

the intersection point between curves 1 and 2, a change from slightly Te- to slightly Cd-

rich composition takes place due to the transition from lower to higher TCd, compared

with the calculated course. As a result, the free carrier concentration along the related

undoped as-grown CdTe crystal shows a transition from p- to n-type conductivity, very

near to this point, corresponding with TCd ≈ 850 °C (Fig. 3.20c). That means, the deviation

from stoichiometry in the direction of Cd excess produces free electrons by Cd interstitials

but in the direction of Te excess free holes by Cd vacancies. It is worth noting that during
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our research with VB and HB methods, we observed, in agreement with literature, a char-

acteristic lowered temperature TCd for the p-n-transition point in horizontally grown

CdTe crystals. In other words, compared to VB, a slightly lower Cd source temperature is

required at HB to obtain near-stoichiometric crystals. Obviously, the direct contact of the

melt–solid interface with Cd vapor leads to an immediate effect of stoichiometry balance.

Further, the crystallization velocity v as a function on the Cd concentration in the

vapor cVCd according to eq. (3.64) was combined with the Cd source temperature TCd

(eq. (3.66)). As parameters were applied: ΔHv = 185 kJ=mol K, c
L0
B = c

L0
Cd = 5× 1018cm−3,

DL = 10−5 cm2=s, and kVLex = kVLCd = 0.5. The related graphic is shown in Fig. 3.21. As a fur-

ther variable, the width of the diffusion boundary layer δD as a measure of the degree of

melt mixing (convection level) is added. For the typical Bridgman/VGF crystallization ve-

locities in the range of 1–5 mm/h, the related region has been marked in blue. In order

to ensure a near-stoichiometric growth, a Cd source temperature of around 860 °C

should be held, as marked by the red region. Of course, if the melt surface temperature

is changing during the growth process, a related TCd program must be adapted, as has

been mentioned above. As can be seen, the blue-red intersecting area meets the relative

thick diffusion boundary layers to be equated with modest convection.

It is obvious, that these results, demonstrated in Figs. 3.20 and 3.21, underline the impor-

tance and capacity of thermodynamic knowledge for well-controlled crystal growth ex-

Fig. 3.21: Calculated relation between the growth velocity of CdTe crystals and the temperature of the Cd

extra source at different diffusion boundary layer thicknesses (degree of convection) to find out optimum

growth conditions for stoichiometric crystal composition, illustrated by the crossed blue (v) and red (TCd)
regions (with permission of Elsevier).
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periments. Of course, identical estimations and experiments can be provided with all

other material systems consisting of compounds with existence region too. The obtain-

ment of stoichiometric crystals can improve their electrical, optical, and mechanical pa-

rameters. Further, it became clear that the unidirectional crystallization proves to be a

dynamic process. Especially during the VGF with nearly constant temperature gradient,

the temperature of the melt surface is continuously decreased by computer program-

ming. As a result, the temperature of the extra source Tex has to change synchronously

when a stoichiometric crystal composition is aimed. A favored way to master such a

challenge should be a model-based automation, reviewed byWinkler and Neubert in the

Handbook of Crystal Growth Vol. IIB (Elsevier 2015).

3.2.4.2.4 Vapour pressure controlled Czochralski growth without liquid

encapsulant

In principle, the Czochralski growth shows a fundamental advantage, namely the growing

crystal has no any contact with a solid container wall. This eliminates the risk of foreign

nucleation with subsequent polycrystallinity and prevents also contamination by unde-

sired impurities. Without question, therefore, this method is unchallenged for elementary

materials, such as silicon and germanium, as well as for hardly dissociating compounds,

such as a lot of dielectrics. For years, this method was primarily used to compound semi-

conductors too, especially the III–Vs, such as GaAs, InP, GaP. However, in order to prevent

their strongly pronounced dissociation in the molten state (see e.g. Fig. 3.16) the melt sur-

face had to be covered with the liquid encapsulant B2O3. Additionally, the free space above

was filled with an inert gas under high pressure. This technique is well-known as liquid

encapsulated Czochralski (LEC). Unfortunately, at such a growing arrangement no low-tem-

perature gradients with homogeneous axial temperature distribution and, therefore, no

thermomechanical stress- and dislocation-reduced crystal growth is possible. The reason

for that is the lacking heat protection of the growing crystal if it emerges from the encapsu-

lant into the furnace atmosphere. In this case a selective evaporation of the volatile compo-

nent from the too hot crystal surface takes place leading to various defect formations. As a

consequence, the LEC is largely replaced by the low-temperature-gradient Bridgman or

VGF technique, which is today used for the growth of numerous dissociating compounds

and mixed systems, such as GaAs, InP, CaF2, Cd1-xZnxTe, (Ga1-xScx)2O3 with crystal diameters

even to 8- and 10-inch like in the case of GaAs and CaF2, respectively. To minimize the

above-mentioned contact between the growing crystal and the container wall, at III–V

growth a thin boric oxide skin is applied in between. However, this preserves an old prob-

lem, namely the contamination with boron and oxygen, quite comparable to LEC. Further-

more, the widely applied non-stoichiometric growth condition from As-rich melt generates

As interstitials precipitating in the as-grown GaAs crystal during the cooling process which

are harmful when their size exceeds a critical value (discussed in chs. 3.2.4.2.1 and 5.4; ex-

plained by Fig. 3.13). Likewise at the Bridgman or VGF growth of InP from P-rich side phos-

phor gas bubbles are incorporated forming deleterious microvoids during cooling down.
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Thus, this gives rise to the question of whether contactless Czochralski growth without

a liquid encapsulant is possible. The author's former team developed this idea further by

applying the VCz without B2O3 encapsulant summarized by Rudolph and Kiessling (2006).

The experiments showed some characteristic advantages, such as contactless crystal pull-

ing, direct control of the melt composition (and, thus, crystal stoichiometry) by an extra

source of the volatile component, removal of the stress maximum at the interface with the

encapsulant, and adjustment of a small axial temperature gradient. Although the following

comments may be of interest for quite a lot of compounds, here only exemplary the

growth of stoichiometric GaAs is reported. The relationship to thermodynamics is obvious.

Fig. 3.22a shows the VCz arrangement without boric oxide encapsulant schemati-

cally. According the p-T-x phase relations of GaAs, shown in Fig. 3.18, the composition

control was possible due to the direct contact between the As-rich vapor phase and

melt surface. The mole fraction of the melt was controlled in situ by the partial arse-

nic pressure adjusted via the temperature of the As source. The axial temperature

gradient at the growing solid–liquid interface was 20 K cm–1. To prevent possible Ga

inclusions due to the Ga enrichment in the diffusion boundary layer, all crystals were

grown by uncritical pulling rates between 3 and 5 mm h–1 depending on the melt com-

position. Seed and crucible were opposing rotated.
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Fig. 3.22: Vapor pressure controlled Czochralski growth without B2O3 encapsulant demonstrated by the

example of GaAs (author’s sketches (a) and image (c); with permission of Elsevier (b)).
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In 3-inch GaAs crystals (Fig. 3.22c) the following qualities have been obtained: - no

twinning, - near-stoichiometric solid composition with markedly reduced As precipitates

and without Ga inclusions, - low and radial homogeneously distributed dislocation den-

sity ≤ 104 cm-2, - reduced boron as low as 1015 cm-3, - no oxygen defects and related com-

plexes, - controlled carbon concentration down to 1 x 1015 cm-3, - semi-insulating behavior

of n-type conductivity with electrical resistivity of > 108 Ωcm. One of the targets was the

prevention of arsenic precipitates and inclusions which are observed in all standard LEC

and VGF grown crystals from As-rich melt. Fig. 3.22b demonstrates the results of the sec-

ond-phase particle analyses by IR laser scattering tomography (LST) versus the mole frac-

tion of the melt xL indicating the degree of As precipitate decoration on presented disloca-

tions. As can be seen, the precipitated arsenic excess decreases with enrichment of Ga

proportion in the melt. At xL = 0.45 almost no As excess was detected anymore. In addi-

tion, the formation of dislocation cell patterns seems to have depressed, since As intersti-

tials contributing to their formation by necessary climb processes are missing.

Comparing this experimental fact with the p-T-x projections in Fig. 3.18, it is ap-

parent that a stoichiometric composition was achieved with a lower excess of Ga in

the melt than sketched in the T-x diagram. This is probably due to the not yet pre-

cisely knowledge of the course of the solidus curve along the existential region. It

must therefore be assumed that its coincidence with the stoichiometry line already

takes place above 1150 °C. Thus we see how important technological investigations are

also for the exact determination of thermodynamic material parameters.

3.2.4.3 Systems with incongruent melting compounds

A number of important material systems, especially multicomponent ones (mostly ox-

ides), contain compounds with incongruent melting behavior (compared with compounds

of congruent melting discussed in Section 3.2.4.2.1). In most cases, such compounds are of

particular significance for lasers, energy converters, high-Tc-superconductivity, fitting

substrates in optoelectronic, and high-power devices, evoking great interest to grow them

as single crystals from the melt. However, the realization proves to be rather difficult.

Compounds of incongruent melting are formed when the interaction energy between the

constituents is reduced, compared to those of congruent melting. As a result, their melting

points and stabilities are decreased, which leads to a premature decomposition before

melting. From the thermodynamic point of view, the Gibbs free energy is lower for one

of the compound component and, thus, heating causes it to transform to liquid phase and

the more stable another solid phase named peritectic reaction. Fig. 3.23a shows the

scheme of a T–x phase projection demonstrating such a situation. The intermediate com-

pound of incongruent melting, denoted by the stoichiometric composition AB2, is located

between the solid component B and the eutectic composition A +AB2. It melts at the peri-

tectic line, with the melting point Tm noting the phase intermediate between the solid B

and liquid L. At the peritectic temperature, three phases are in equilibrium, being the

maximum for a two-component system. Therefore, according to the Gibbs’ phase rule of
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eq. (3.6), there is no more degree of freedom. To crystallize pure AB2, its perfect equilib-

rium with the liquid in the range of xeut < xB < xper must be maintained.

Two possible intermediate compound types are implied: (i) the line type with exact

stoichiometric composition (or a very small existence region) along the whole tempera-

ture, referred to as daltonide, e.g., like AB2 in Fig. 3.23a, and (ii) the composition with

quite pronounced existence region, e.g., AνA± δxB2νB∓ δx (dashed area in Fig. 3.23a) named

berthollide. Figure 3.23b and c presents two realistic examples. A system with daltonide

shown in Fig. 3.23b is the intermediate compound PrSc3(BO3)4 with incongruent melting

point at 1480 °C on the peritectic line formed between the two quasi-binary compounds

PrBO3 and ScBO3. It belongs to the binary borates, the monocrystals of which are known

as laser media, allowing doping with lanthanide ions in high concentrations without

considerable luminescence during self-quenching. There are many other examples of

identical incongruent line-like existence forms having important applicability, such as

SrPrGaO4 as substrates for epitaxial growth of high-Tc superconductor thin films, or

Y3Fe5O12 as microwave filters and acoustic transmitters. On the other hand, Fig. 3.23c

shows the system Al–Ni, which contains, besides daltonides, the berthollide Al3Ni2

Fig. 3.23: T–x projections of assumed (a) and real systems (b, c) with intermediate compounds of

peritectic decomposition and incongruent melting point (with permission of Elsevier (b, c)).
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with extremely wide existence region (note, the mole per cents axis is truncated at

50%). Al–Ni composites are used as brazing solder for ultrasonic welding of lithium-

ion battery packaging, whereby the intermediate phases can promote or affect the

weld quality.

Generally, all compounds with incongruent melting are characterized by the im-

possibility of their growth directly from a melt of the same composition. Their suc-

cessful growth is only possible from starting melts with concentrations between the

peritectic and eutectic points of the liquidus curve (region xeut < xB < xper in Fig. 3.23a).

Such a melt is quite comparable with a melt–solution possessing a native system com-

ponent as solvent. Due to the usual enormous composition difference between the sol-

idus and liquidus of peritectic compounds xS/xL (in Fig. 3.23 this ratio is ≫1) at unidi-

rectional crystallization, a marked part of the excess component is rejected at the

propagating melt–solid interface, causing a high danger of constitutional supercooling

(see lecture part III). Therefore, often relative low growth rates must be applied. High-

quality crystals grown by the top-seeded solution growth (TSSG) have been reported

in the related literature. By the way, quite a similar situation occurs at the growth of

congruent melting compounds at reduced temperatures, far less than their melting

point from a melt with high excess of one of the components acting as solvent. An

additional effect of improved axial homogeneity is achieved when a liquid zone of the

excess component is used like in the traveling heater method (THM).

Another difficulty concerns the berthollides with extended existence regions. Due

to the impossibility of growth from near-stoichiometric melt, their as-grown solid

composition is always deviated from stoichiometry toward the liquidus composition

(see Fig. 3.23a and c). Furthermore, due to the change of the melt composition from

the starting mole fraction xL ≤ xper down to xL ≥ xeut, the degree of deviation from stoi-

chiometry follows the given solidus course of the existence region. As a result, such

melt-grown crystals are enriched by a marked intrinsic point defect content affecting

the electrical, optical, and magnetic parameters. Additionally, the composition of sin-

gle crystals varies strongly along the growth direction. Of course, for special applica-

tions, off-stoichiometric composition may prove favorable. However, when strong

stoichiometric crystals are required, post-annealing (of cut wafers) of the vapor of un-

dersaturated component is recommendable.

3.2.4.4 Systems with solid–solid transition

An uncomfortable situation arises when an as-grown crystal, during its cooling down

from the crystallization temperature to room temperature, undergoes a solid–solid

phase transition, as sketched in Fig. 3.14f. Such transformation from one to another

crystalline structure is driven by the principle of Gibbs free energy minimization (see

Section 2.1), whereby with reducing temperature, the potential of the low-temperature

phase falls below those of the high-temperature one. Hence, a first-order phase transi-

tion takes place as was introduced in Section 2.2. and characterized by Tab. 2.1. Due to
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the reduced kinetic ability, the solid–solid phase transitions proceed often incompletely

and are mostly accompanied by generation of structural defects like twins, dislocations,

and grain boundaries.

In elementary crystals, the presence of different crystalline structures is known

as allotropism. In multicomponent materials, it is named polymorphism. For instance,

diamond and graphite are well-known allotropes of carbon, belonging to the cubic

and hexagonal crystal system, respectively (see Fig. 3.4, left). Another example is sul-

fur, which shows, above 95.6 °C, a monoclinic structure (β-sulfur), but below it, an or-

thorhombic one (α-sulfur). Further, silicon carbide (SiC) is a well-known semiconduc-

tor compound, being unique in this regard due to more than 250 polymorphs. The

different polytypes have wide ranging physical properties. Among the SiC polytypes,

6H (hexagonal symmetry) is most easily prepared and best studied, while the 3C

(cubic) and 4H polytypes are attracting more attention for their superior electronic

properties. Due to its unique conduction band structure, the rhombohedral 9R-SiC

may also exhibit improved electron transport properties and could be suitable for

high-frequency and high-voltage applications. The polytypism of SiC makes it nontriv-

ial to grow in single-phase state.

There exists an enormous number of publications on allotropism and polymor-

phism in the fields of material science, and crystal growth being available for more

explicit studies. Here, the methodical difficulty will be demonstrated by one example

only – the melt growth of ZnSe crystal.

Equal to numerous other II–VI compounds, ZnSe shows dimorphism. At room tem-

perature, the zinc blende structure (ZB) is the stable form showing the stacking sequence

aα–bβ–cγ–aα (3C) (Fig. 3.24a). However, at high temperatures, near the congruent melting

point Tcmp = 1425 °C, the wurtzite phase (W) with stacking sequence aα–bβ–aα (2H) does

exist (Fig. 3.24b). Therefore, melt-grown crystals pass through a solid–solid phase transi-

tion from W to ZB (2H → 3C) during the cooling process. The transition point has been

found at about 100 °C below Tcmp at 1425 °C. Conversely, a ZB seed crystal would undergo

a 3C → 2H transition during heating (Fig. 3.23c). Figure 3.23d sketches a magnified cutout

of the T–x phase projection of the system Zn–Se, showing the existence region of ZnSe

compound with the W–ZB phase translation. A possible crystallization path from Se-rich

melt is added by the red arrows. As can be seen, if the melt of a given mole fraction xL

meet the solidus SW first, the W phase is crystallized. Then, at T < 1425 °C, the solidus SZB

of the ZB phase with composition xS is reached. Thus, a disassociation into two phases of

different composition within a certain temperature interval takes place. Usually, for this

process, relatively slow kinetics over a longer period of time is necessary, owing to

atomic interdiffusion. Thus, under practical crystal growth conditions, a partial freezing-

in of any intermediate state of atomic disorder (e.g., interstitials) and also W rudiments

can be expected. However, especially in ZnSe, above 1200 °C, the transformation kinetics

proves to be so rapid that remnants of metastable W phase are not observed at room

temperature. Considering the high migration mobility, especially of Se atoms, their shift

from W-positions to ZB-positions within every second (0001) double net plane is com-
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pleted relatively fast. Owing to the low energy required for this atomic movement, a

preferential layer-by-layer nucleation mechanism for the ZB phase, parallel to the (0001)

plane of the W structures, is most probable. Therefore, a monocrystal with W structure

may always translate, on cooling into a single crystalline ZB ingot having one of the {111}

planes parallel to the former {0001} plane. In an uniaxial temperature gradient, as is

applied at VB or VGF growth during cooling down, the W–ZB transition starts at the

coldest region, i.e., at the bottom tip of the as-grown wurtzite crystal. However, due to

the very low energetic differences between the 3C and 2H stacking sequences, when

more of a certain density of dislocations are already present in the W phase, the genera-

tion of stacking faults are facilitated. As a resultmicrotwinned ZB crystals will be formed,

whereby the twinning sequence is dependent on the ZB nucleation mode, which may, in

turn, be a function of the degree of supersaturation of the 2H-3C phase translation.

Conversely, by heating up of ZB crystals the situation is far more complicated.

Then, at the phase transition point the ZB structure can be transformed into four dif-

ferently oriented W individuals with only one (0001) plane each. As a result, a W

polycrystal containing large angle grain boundaries will be formed (Fig. 3.24c). This

fact has to be considered in the growth from melt if a ZB seed is provided. Its transi-

tion into the W phase is accompanied by generation of polycrystallinity, making its

application quasi impossible. In its place, a wurtzite seed crystal could be used. In

Fig. 3.24: Wurtzite (W)–zinc blende (ZB) solid–solid-phase transition in ZnSe compound (d) leading to

crystal structure defects like twinning during cooling of the as-grown crystals from melt and during heat

up of a ZB seed (c) (with permission of Elsevier).
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principle, the low-temperature growth from melt–solution below the solid–solid tran-

sition temperature, e.g., by THM, is favored all the more because the use of seeds of

low-temperature ZB phase is allowed.

3.2.5 Ternary systems

With the increasing search for new materials showing specific or improved parameters,

suitable for the widening of several application fields, systems with combinations of

more than two (or quasi-two) components become more and more important. Apart

from the well-known ternary semiconductor mixing systems on the basis of III–Vs or

II–VIs, like In1–xGaxAs, Ga1–xInxN, and Cd1–xZnxTe, or the long-term experiences on the

quasi-ternary system PbO–Fe2O3–Y2O3 for YIG crystallization from PbO solution, cur-

rently, the study and epitaxy of diverse newer metallic, semiconductor, oxide, and

organic ternary systems are under investigation or already applied in industry. For

instance, Ni–Al–Ti superalloys are unidirectionally solidified to form turbine blades of

high creep and oxidation resistance, MgxTM1–xN (TM = Ti, Zr, Hf, Nb) mixed crystals

show remarkable optoelectronic properties, Nd2O3–Lu2O3–Sc2O3 serves for preparation

of perovskite-type mixed crystals, NdLu1–xScxO3, which are used as substrate material

for strain engineering of epitaxial perovskite layers, Li2O–Na2O–MoO3 component rela-

tions are of increasing interest for LiNa5Mo9O30 crystal production with outstanding lu-

minescent properties, and the ternary organic system DC–NPG–SCN (D-camphor–

neopentylglycol–succinonitrile) are used for obtainment of transparent plastic crystals.

The simplest ternary-phase diagram A–B–C consists of three binary systems A–B,

A–C, and B–C with complete mixing of the liquid and solid phases (ternary isomor-

phous system). But mostly, there are ternary systems of differing characteristics, for

instance, when all three binary subsystems show eutectic transitions. Besides this,

there are also combined systems composed of one or two binaries with eutectics and

one or two binaries of complete mixing, respectively. Further, combinations between

systems with peritectics and compound formations are also possible. With the result,

the three-dimensional representations of such phase diagrams often become ex-

tremely complex. Even today, when the finding of new material qualities on the basis

of assembling various proper substance combinations is of increasing importance, an

increasing demand for the better geometrical imagination and mastery of ternary-

phase diagrams is required. Fortunately, there is a large number of related textbooks,

publications, and many excellent internet lectures as well as presentations that are

highly recommended. Here, we will give some introductory information only.

Mostly the complex three-dimensional illustrations, shown in Fig. 3.25a, are re-

placed by horizontal cuts transverse to the vertical temperature T-axis, which repre-

sent more clearly isothermal compositional planes, like in Fig. 3.25b. The most conve-

nient form is an equilateral triangle. It is clear that three mole fractions of a ternary

system A–B–C must result in a sum of unity, as xA + xB + xC = 1. Thus, there are two
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independent concentrations. After the Gibbs phase rule [eq. (3.6)] in a system with

three components, a maximum of five coexisting phases is possible. However, at fixed

low pressure (~0.1 MPa), the variance of the system is decreased and becomes four

phases, maximum, in equilibrium. If the temperature T (along the z-axis) is kept free,

a three-dimensional T-(xA, xB, xC) – phase projection with concentration axes in form

of a triangle base plane (Gibbs triangle) can be constructed. Figure 3.25a shows the

liquidus planes L of a sketched ternary eutectic system in three-dimensional presenta-

tion. Let us start the crystallization path from a given liquidus point Z projected into

the two-dimensional plane in Fig. 3.25b. First, only one solid phase (A) is in equilib-

rium with L, which is obtained by the so-called primary crystallization. In the same

way as the residual melt is enriched by B and C, the path reaches point Y with two

coexisting solid phases (A and C). Finally, the ternary eutectic E (with three coexisting

solid phases) of the lowest melting temperature is reached. The dotted lines in the 3D

contour represent some isotherms. They also appearing as such in the 2D projection,

marked by the given z-level of temperature.

Some of the ternary- and quaternary-phase diagrams show a miscibility gap. In

these systems, the interaction parameter between two (or more) participating compo-

nents (or compounds) Ω has a large value > 0 (we introduced Ω in Section 3.2.3; see

also Figs. 3.9 and 3.10). Miscibilities are possible in the liquid state and in solid-

solutions. An example of insoluble fluids is alcohol (as component A) in water (compo-

nent B). But, by adding salt (as ternary component C), their solubility increases by sep-

aration into an alcohol-rich and water-rich solutions. Miscibility gaps in solid-

solutions have been found in quaternary semiconductor III–V systems, for example.

Such regions within the phase diagrams exist in GaxIn1–xAsySb1–y or GaxIn1–xPyAs1–y,

which do not make it easy to produce homogeneous thin films even by liquid-phase

epitaxy (LPE). But it has been overcome by tin film epitaxy using very efficient sub-

strate strain-stabilizing effect which reduces the miscibility gap significantly.

Figure 3.25c shows a Gibbs triangle with composition lines of a three-component

system A–B–C, in which the pair C–B is partly miscible. First, let us assume an alloy at

the black point P within the isothermal section of the completely mixed phase. Then,

the three perpendicular distances of P from the sides of the triangle (black dotted

lines) correspond to the fractional composition of each alloy partner. This is because,

in an equilateral triangle, the sum of the distances of each point add up to the height

of the triangle, which is equal to 100% (xi = 1). For an easier reading, one uses the coor-

dination grid added in Fig. 3.25c as thin network. As was mentioned above, two inde-

pendent variables are needed to characterize a ternary system. Knowing two varia-

bles, the third follows, as the remaining from 100% (or the remaining fraction from

unity). Turning the focus now to the miscibility gap (red dashed area in Fig. 3.25c).

There are two phases in equilibrium. The compositions of the phase relation coexist-

ing at the red point P can be deduced from the lever rule along the tie lines (red lines)

connecting the two phases. Knowing the relative composition A:B:C of the respective
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line ends L1 and L2, each quasi new alloy composition P on that line to be crystallized

can be deduced as

%L1 =
P− L1

L2 −L1
100% and %L2 =

P−L2

L2 −L1
100% (3:68)

with P–L1, P–L2, and L1–L2, the distances between composition P and L1, P and L2, and

the total tie line lengths L1–L2, respectively.

Let us demonstrate an example of how to feasibly work with a ternary-phase projection

at crystal growth. Fig. 3.26 shows the triangle projection of the system Pb–Sn–Te, impor-

tant for the growth by THM and LPE of Pb1–xSnxTe mixed crystals and epitaxial layers

from Te- or Sn-rich melt–solutions. Such crystals and thin films are used in lasers and

diodes of IR-wavelengths and recently, also for thermoelectric devices. The system com-

bines the two added binaries with compounds PbTe and SnTe as well as the eutectic sys-

tem Pb-Sn. Between them, the mixed solid solution Pb1–xSnxTe does exist. Some liquidus

isotherms are inserted in the Pb–Te–Sn projection as black lines. In order to visualize

their origin, the exemplary connections with the related temperature points of 750 °C in

the binaries liquidus curves are demonstrated. Also the iso-concentration lines in the

mole fraction xSSn of the solid solution Pb1–xSnxTe are inserted as blue dashed lines. For

instance, an aimed solid composition xSSn= 0.2 can be obtained at the given growth tem-

3

Fig. 3.25: 3D and 2D sketches of ternary-phase diagrams without (a, b) and with two-phase region (c).
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perature of 600 °C from both Te- or Sn-rich side if the melt–solution compositions are

xLPb:x
L
Sn:x

L
Te = 0.18: 0.07: 0.75 (point P1) or 0.40: 0.55: 0.05 (point P2), respectively. However,

contrary to the Sn-rich side (P2), the Te-rich region (P1) shows a more ideal behavior.

Here, the iso-concentration lines are nearly linear (see Fig. 3.26). That means, at all liqiu-

dus temperatures of related Te fraction as solvent, the solid Pb/Sn ratio, determined by

the equilibrium distribution coefficient k0 = xSSn=x
L
Sn, is quasi constant, being of certain

methodical advantage.

3.2.6 The thermodynamic equilibrium segregation coefficient

3.2.6.1 Segregation at melt–solid phase transitions

As has been noted in the previous chapters, the segregation coefficient was already needed

to apply occasionally. Let us now turn to the exact thermodynamic determination and ap-

plication of this very important coefficient affecting markedly crystal growth processes.

The effect of segregation (or distribution) is subjected to the concentration differ-

ence between solid and fluid phases. Only single component and congruently melting

multicomponent systems, treated in Sections 3.1 and 3.2.4.2, respectively, remain al-

most unchanged during crystallization. In all other systems, the composition of the

Fig. 3.26: Projection of the liquidus surface by isothermal cuts of the system Pb–Sn–Te (with permission of
Springer Nature (binary-phase diagrams) and Elsevier (ternary-phase projection)).
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solid differs from that of the fluid phases (here, the melt). Figuratively, this follows

from the difference between the solidus and liquidus, as has been shown above in the

various T–x projections. That means, at the nucleation of the solid phase within the

molten phase or at a propagating melt–solid interface, a component redistribution al-

ways takes place. From the beginning, this fact proves to be one of the main chal-

lenges in crystal growth. Strictly speaking, because of the impossibility of the exis-

tence of absolutely pure elements, segregation does not only occur at crystallization

of multicomponent alloys and mixed systems. Even the residual impurities and inten-

tionally doped additives are subjected to this effect. Besides the obtainment of highest

purity, the homogeneous distribution of dopants within the crystal belongs to the ab

initio mastering of high-quality single crystals.

The diversity of occurrence of segregation is demonstrated by three selected T–x

projections in Fig. 3.27a–c. Sketch (a) shows the mixed system K2NO3–Na2CO3. The figure

below shows the magnified K2NO3-rich side with red tangents approximating the courses

of liquidus and solidus. As is well known, such first approximation is feasible at low con-

centrations of the related second admixture B (here Na2CO3) in order to gauge the equi-

librium segregation coefficient k0 = xBS=xLS, being constant at two straight ledges. Of

course, in such systems of total mixing, k0 is continuously changing over the whole

range, 0 < xB < 1, and the approximation by two tangents must be replaced by a regres-

sion (see below). In b) a typical case of very high dilution is shown as in the case of the

residual impurity carbon in silicon. From the magnified figure below, it follows that up

to the limit of solubility at xC ≈ 5 × 10–4 (≈ 3.5 × 1018 C atoms per cm3), both liquidus and

solidus are well fitted by two tangents so that the constancy of k0 = 0.07 in this region is

quite reasonable. Such pronounced effect of segregation makes it relatively easy to pu-

rify silicon from carbon but on the other hand, difficult to distribute it uniformly within

the as-grown crystal. Finally, (c) shows the quasi-binary system, Nb2O5–Li2O3, with the

stoichiometric compound LiNbO3, having, however, a very wide existence region. As

demonstrated in the below sketch, both paths of crystallization, either from Nb2O5 - or

from Li2O3-rich side, are possible to meet the compound composition. However, whereas

on the left side liquidus and solidus can be very well approximated by two tangents, on

the right side this measure proves to be imprecise, especially concerning solidus. Thus,

k0 is constant on the left (1.04) up to the deviation of the mole fraction from stoichiome-

try δx ≈ −0.1, but on the right (~0.9), only up to a very small excess of δx = +0.01, respec-

tively. Also for such a case, especially with a steeper retrograde solidus, we will show a

mathematically better approximation below.

Now, let us develop some thermodynamic relations. When a melt of a given com-

position [CBL], in mole fraction xBL = CBL½ �= CBL½ �+ CAL½ �ð Þ, is cooling down to the equi-

librium with the solid phase at a given equilibrium temperature Teq, crystallization

starts with differing mole fraction xBS = CBS½ � = CBS½ �+ CAS½ �ð Þ. The correlating thermody-

namic equilibrium (or distribution) coefficient k0 results from the equalization of the

Gibbs free potentials of solid (S) and liquid (L) phases, as was already performed by

eqs. (3.51) and (3.52)
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μ0BS +RT ln xBS +RT ln γBS = μ0BL +RT ln xBL +RT ln γBL (3:69)

and after transforming, it becomes

ln
xBS

xBL

� �

= ln k0 =
μ0BL − μ0BS +RT ln γBL −RT ln γBS

RT
(3:70)

with the terms of ideal mixing μ0BL − μ0BS = Δh0B − TΔs0B and according eq. (3.38) the excess

contributions RT ln γBL, S = ΔhexBmL, S in the liquid and solid, respectively. Finally, it is

lnk0 =
Δh0B
R

1

T
−

1

TBm

� �

+
ΔhexBmL − ΔhexBmS

RT
(3:71)

After setting ΔsB
0 = ΔhB

0/TBm, with TBm the melt temperature of the pure added ele-

ment B, and assuming the excess terms ΔhexBmL, S = 0 [compare with eq. (3.52)], the ther-

modynamic equilibrium segregation (or distribution) coefficient for a system of ideal

mixed solutions in melt and solid is

ln k0id =
Δh0B
R

1

T
−

1

TBm

� �

(3:72)

where Δh0B is the intensive standard enthalpy of the added pure component B, and R

the universal gas constant.

As we discussed in Section 3.2.3, in practice, most binary systems show a real be-

havior of their components. Then, eq. (3.72) for ideal mixing in both phases does not

prove to be more satisfactory and the excess terms must be considered. In an usual

case of ideal mixing in the melt (ΔhexBmL = 0) but real mixing in the crystalline phase

(ΔhexBmS≠0), the segregation coefficient is

ln k0 =
Δh0B
R

1

T
−

1

TBm

� �

−
ΔhexBmS

RT
(3:73)

As mentioned in Section 3.2.3, the determination of the excess enthalpy via the activity

coefficient γ proves to be often difficult due to the lack of exact interchange energies

between the constituents within the phases. Using the activity coefficient γi of an

added component i for the simple model of symmetric regular solution in a binary

real mixed solid system A–B, the excess enthalpy of an added component i = B is

ΔhexBm xð Þ=RT ln γB =Ω 1− xBð Þ2 =Ωx2A (3:74)

where Ω is the interaction parameter comparable with energy of interaction ω [see

eqs. (3.40)–(3.43)]. Inserting eq. (3.74) into eq. (3.73) at a given T, the equilibrium segre-

gation coefficient becomes
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Fig. 3.27: T–x projections of selected binary systems, illustrating the segregation effect between liquidus L
and solidus S, approximated by tangents; (with permission of Elsevier (a, c) and Springer Nature (b)).
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ln k0 =
Δh0B
R

1

T
−

1

TBm

� �

−
Ωs 1− xBSð Þ2

RT
(3:75)

where Ωs is the interaction parameter in the crystalline phase according to eq. (3.43).

More detailed treatments of the interaction parameter and the related activity coeffi-

cients are given in Spec box 3.6. Today, there exists an enormous number of publications

and textbooks dealing with experimental and theoretical (numerical) determination of

the segregation coefficient in diverse melt growth material systems that are highly rec-

ommended for knowledge deepening. An approach to theoretically estimate k0 based on

the models ofWeiser (1958) and Chernov (1980, 1984) is given in the Spec box 3.9.

As shown in Fig. 3.27a–c, mostly the constancy of k0 is justified for low concentra-

tions of only the additives. In reality, however, due to the redistribution during the

running process of crystallization, the liquid and solid compositions successively fol-

low the courses of the liquidus and solidus, which increasingly deviate from straight

tangents with increasing concentration. As a result, the k0 value is changing too. In

Section 3.2.4.1, we presented the equations of the whole liquidus and solidus curves of

an ideal mixed binary systems [see eqs. (3.56) and (3.57)]. For the first approximation,

at successively selected Teq values in the region between TAm and TBm, each related

xBs/xBl ratio and, thus the corresponding k0 = f(T,x) could be determined and then re-

corded into a diagram, as demonstrated by the insertion in Fig. 3.11, for example.

Spec box 3.9: Theoretical approaches to the equilibrium segregation coefficient

In the following, the theory is particularly applied to segregation in crystals of covalent bonding char-

acter. According to eq. (3.1), the chemical potential of a component i within a regularly mixing melt

and solid can be expressed as

μi = ui − Tsi + pΩVi (B3:9‐1)

where ui is the specific particle energy within the phases, T the absolute temperature, si the specific

particle entropy, p the system pressure (let us take 0.1 MPa), and ΩVi the volume of the added atom

sort ≈ 10–23 cm3. Because of the very low value of pΩVi ≈ 10
–24 J (or rather in specific form by multiply-

ing with Avogadro’s constant ≈ 0.1 J/mol) this energetic part can be omitted. The specific particle en-

ergy consists of internal (potential), configurational, and deformation terms

ui = uinti + uconfi + udefi (B3:9‐2)

and the specific particle entropy consists of the internal (electron state of the additive) and configu-

rational parts as

si = sinti + sconfi (B3:9‐3)

First, the configurational energy within the crystal is determined. This term depends on the statistical

distribution probability of the added atoms B in crystal A, given by the mole fraction xB = NB/(NA + NB),

where NA and NB are the total number of matrix atoms and added atoms within the matrix, respec-

tively. As is well known from related textbooks on thermodynamics of mixed systems, the total poten-

tial energy of all bonds in a crystal of matrix A mixed by an additive B on the lattice sites yields
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UconfA =
z
2

2ωAB
NANB

NA +NB
+ωAA

N2
A

NA +NB
+ωBB

N2
B

NA +NB

� �

(B3:9‐4)

where z is the number of nearest neighbors, ωAA, ωBB, and ωAB are the bond strength-related inter-

change energies between similar A–A, B–B, and different atoms A–B, respectively. Thus, the change of

the configurational energy by adding of one atom B into matrix A is

uconfB!A =
∂UconfsA

∂NB

�
�
�
�
NA=const

≈
zωBB

2
+ 1− xBð Þ2Ω (B3:9‐5)

with Ω the interaction parameter with the surrounding atoms, which we introduced already by eqs.

(3.40)–(3.42) via the model of quasi-chemical equilibrium. The exchange (mixing) energy within the

crystal with regard to one bond in intensive form is

Ω= zNAv ωAB −
1

2
ωAA +ωBBð Þ


 �

J=mol½ � (B3:9‐6)

(see also Spec box 3.6-ii), wherein ωAB can be approximated by the empirical rule of Allen (1961)

whereby the conventional bond energies Eb are additive:

EbAB ≈
1

2
EbAA + EbBB
� 


(B3:9‐7)

Then, the interaction energies ωAA and ωBB are expressed via the bond strengths between similar

atoms, correlating with the sublimation enthalpies ΔHA and ΔHB, which are listed in tables. After carry-

ing out this replacement and setting eq. (B3.9-7) into (B3.9-6), in consideration that the bond energy

between attracting atoms is negative, it becomes

Ω=
ΔHA −ΔHBð Þ2
ΔHA +ΔHB

(B3:9‐8)

For instance, the sublimation enthalpy of silicon is 383 kJ/mol and of lead is 177 kJ/mol. Thus, according

to eq. (B3.9-8), Ω ≈ 76 kJ=mol. Inserting this value into eq. (B3.9-5) with z = 4 due to tetrahedral coordi-

nation and assuming xPb to be very small, the configurational energy of the added element Pb in Si is

uconfPb!Si ≈ 430 kJ=mol. As can be seen from eq. (B3.9-8), the model fails when ΔHA ≈ΔHB, where of one

can only conclude that Ω � ΔHA, ΔHB.
Next is to calculate the deformation energy udefB . When a host atom A is replaced by an impurity

atom B, whose normal tetrahedral radius rB differs from that of the host atom rA by the difference Δr
(e.g., rB > rA), the four nearest neighbors move out radially by an amount Δr1, which is less than Δr be-
cause of the compression of the impurity–host atom bonds. The displacement of the four nearest

neighbors of the first shell will push the atoms of the second shell outward which, in turn, deforms the

next surrounding and so forth. However, due to the rapid decrease of the deformation sphere and

assuming small concentration of B without mutual influence, the first shell situation can be approxi-

mated by a continuous medium of macroscopic elastic properties, sufficiently well described by

Hooke’s law in the classical elasticity theory:

udefB = 8πNAvGrAΔr
2 J=mol½ � (B3:9‐9)

where G is the shear modulus of elasticity of the host crystal. Again, for intensivation, the right term is

multiplied by the Avogadro’s constant NAv. Proceeding with the same example of silicon (GSi = 80 GPa

= 80 kJ/cm3, rSi = 2.35 × 10–8 cm) doped with lead (rPb = 2.68 × 10–8 cm), the deformation energy is

≈308.6 kJ/mol.
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Now, the configurational entropy is determined. The probabilities of occupation of a matrix A lattice
sites by atoms B is s= R ln ðNA +NBÞ! NA! NB!½ � with R = k NAv, the universal gas constant. Using Stir-

ling´s approximation (ln x! ≈ x ln x), the total configurational entropy is

sconf =−RNA ln
NA

NA +NB
− kNB ln

NB

NA +NB
(B3:9‐10)

The change of this value by adding one atom B into matrix A is

sconfB!A =
∂sconf

∂NB

�
�
�
�
NA=const

=−R ln xB J=molK½ � (B3:9‐11)

By the insertion of eqs. (B3.9-5), (B3.9-9), and (B3.9-11) into eq. (B3.9-1), the chemical potential of the

additive B within crystal A (i.e., in the solid S) is

μBS = μ0BS + RT lnxBS + 1− xBSð Þ2Ωs + 8πNAvGrAΔr
2 (B3:9‐12)

whereas μ0BS is the standard potential of the added element B at given temperature T consisting of

μ0BS = uintBS +
zωBB

2
− TsintBS (B3:9‐13)

The chemical potential of the liquid phase L consists of analogous terms. However, the deformation

energy can be omitted so that

μBL = μ0BL + RT ln xBL + 1− xBLð Þ2ΩL (B3:9‐14)

where ΩL is the interaction parameter in the melt consisting of the coordination number zL in the melt

(~6) and mixing energy in the melt, analogous to eq. (B3.9-6). Usually, this value is in most melts rela-

tively small, yielding only few kJ/mol, e.g., in molten silicon, 5–25 kJ/mol.

In the case of relatively small impurity/dopant concentration, it is (1 – xBS,L) ≈ 1. Further, according
to eq. (3.53), the difference of the standard potentials is μ0BL − μ0BS =ΔhB − TΔsB. After equating eqs.

(B3.9-13) and (B3.9-11), it becomes

ln
xBS
xBL

= ln k0 =
Δh0B − TΔs0B
� �

+ΩL −ΩS − udefB

RT
(B3:9‐15)

Setting ΔsB0 =ΔhB0=TBm, with TBm the melt temperature of the pure added element B, the segregation

coefficient is given by

ko = exp
Δh0B
R

1

T
−

1

TBm

� �

+
ΩL −Ω S − udefB

RT

" #

(B3:9‐16)

In the literature, one can find diverse theoretically calculated k0 values and their comparison with ex-

perimentally determined ones. Here are some examples: Sn in Si ! kcalc = 0.8× 10−2, kexp = 2× 10−2;

As in Si ! kcalc = 1× 10−2, kexp = 9× 10−2; Pb in Ge ! kcalc = 1× 10−4, kexp = 4 × 10−4.

Let us remain at the small impurity/dopant concentration levels. Then, the mathematical approach

proves to be considerably simpler. From T–x phase projections, it follows that the additive increases or
decreases the melting point of the matrix element. The equilibrium of chemical potentials can then

written as

μAS + RT ln 1− xBSð Þ= μAL + RT ln 1− xBLð Þ (B3:9‐17)

and at very small concentration of B, one can approximate
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ln
1− xBSð Þ
1− xBLð Þ ≈ xBL − xBSð Þ (B3:9‐18)

from which follows at use of ko = xBS=xBL that xBL − koxBLð Þ= xBL 1− koð Þ. Inserting this relation into eqs.

(B3.9-18) and (B3.9-17) and setting μAL − μAS =ΔhA − TΔsA =ΔhA TmA − Tð Þ=TmA, it becomes

k0 = 1−
ΔhA TmA − Tð Þ
RTTmAxBL

(B3:9‐18)

Due to the validity of eq. (B3.9-18) only for xB ≪ xA, one can equate T ≈ TmA, leading to the final quite

practicable form, deduced by Hayes and Chipman (1939) as

k0 = 1−
ΔhAΔT

RT2mAxBL
(B3:9‐17)

This formula proves to be very helpful for the crystal grower to estimate the expected distribution

along the as-grown crystal and also the effectiveness of material purification.

An exact determination of k0 on the basis of known phase projections proves to be

the description of the real solidus and liquidus courses by using the regression func-

tions. As is demonstrated by Fig. 3.28a, it can be assumed that in most phase diagrams,

the trajectories of solidus and liquidus can be expressed by polynomials. For instance,

a polynomial of second order describes the temperature dependence of the solidus as

a function of the mole fraction of the added component B as

Fig. 3.28: Sketched regression functions of liquidus and solidus in a characteristic binary system (a) and in

the double-log coordinated T–x projection of the system Al–Mg with determined k0 (b).
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T xBSð Þ= pBSx
2
BS + qBSxBS + TmA (3:76)

and of the liquidus as

T xBLð Þ= pBLx
2
BL + qBLxBL + TmA (3:77)

where pBS,L and qBS,L are the related regression coefficients and TmA is the melting point

of the crystalline matrix (note, due to the corresponding adjustment, the temperature T

and mole fraction in eqs. (3.76) and (3.77) have the dimensions °C and mol%, respec-

tively). The validity range of regression is between TmA and TE (eutectic temperature).

Thus, the deviation of the given temperature in this region T(xBS,L) from the melt tem-

perature TmA is ΔTS,L = TmA − T xBS, Lð Þ=−pBS,LxBS,L2 − qBS,LxBS,L. Because the equilib-

rium segregation coefficient k0 = xBS/xBL always represents the isothermal concentration

ratio so that ΔTS = ΔTL, one becomes pBSxBS2 + qBS xBS = pBLxBL2 + qBL xBL, from which

the concentration dependence of k0 can be derived as

k0 xBð Þ= pBLxBL + qBL

pBSxBS + qBS
(3:78)

where the regression coefficients should be taken from the experimentally determined

T–x projections according to the method of the least square error. By an analogue pro-

cedure, the temperature dependence of the segregation coefficient can be obtained as

k0 Tð Þ=
pBL ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2BS − 4pBSΔT
q� 


− qBS

pBS ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2BL − 4pBLΔT
q� 


− qBL

(3:79)

where ΔT = TmA − T xBS, Lð Þ. For instance, in the system Al-Si within the temperature re-

gion 660 °C (TmA) – 577 °C, the regression coefficients are pSiL = −0.0371, qSiL = −6.2958,

pSiS = 5.6065, and qSiS = −77.1694 so that at T xBS,Lð Þ= 600 °C the segregation coefficient

becomes k0 ≈ 0.1, being in good agreement with experimental data.

Because of the difficult readout of small concentrations in a common T–x phase

projection with linear coordinates (Fig. 3.28a), it is more favorable to present the re-

gression functions in log-log coordinates as is demonstrated for the system Al–Mg in

Fig. 3.28b. The equilibrium segregation coefficient of Mg in Al, determined in this way,

is added as red curve in logarithmic scale. Its functional dependence on the melting

point reduction k0(ΔT) shows nearly constant value of 0.3 up to ΔT = 102 but then in-

creases up to 0.5 at TmAl − TEð Þ= ΔTE = 210 °C where TE is the eutectic temperature =

450 °C (quite comparable with Fig. 3.2a).

Such a k0 determination via regression functions may be very helpful for the

growth of mixed crystals within a wide range of mole fraction, like binary Cu1–xNix,

Ge1–xSix, and pseudo-binary systems In1–xGaxP, Cd1–xZnxTe, Bal–xKxBiO3, for example.

A significant practical challenge proves to be the management of homogeneous x dis-

tribution within the growing crystal as far as possible (we will return to this impor-
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tant task in the lecture part III). On the other hand, crystal growth also means obtain-

ing monocrystalline objects of certain physical properties requiring highest chemical

purity. Therefore, the minimization of residual impurities and homogeneous distribu-

tion of dopants of relatively low concentrations (1012–1017 cm−3) plays a similarly im-

portant role. At such highly diluted solution, named Henry’s range, the interaction be-

tween the impurity and dopant atoms or molecules can be neglected and the above

mentioned approximation of the liquidus and solidus by two tangents meeting in the

melting point of the matrix component A (see Fig. 3.27a) is quite justified. Then, k0 can

be treated as constant and determined by

k0 =
xBS

xBL
=

nBS

nAS + nBS

nBL

nAL + nBL
=
nBS

nBL
=
cBS

cBL
=
wBS

wBL
≈ const

�

(3:80)

where cB is the concentration, nB is the component quantity, and wB is the mass frac-

tion of the regarded impurity or doping element B [see eqs. (3.13)–(3.15)].

At the growth of compound crystals, one is concerned with the problem of segrega-

tion of the excess partner component A or B between the liquidus and solidus of the

existence region ðAνA ± δxA
BνB ∓ δxB

ÞS [see eq. (3.60) and Figs. 3.13, 3.14, and 3.27c]. This

aspect becomes more complicated when the congruent melting point is deviated from

stoichiometry and the solidus course above the eutectic point is retrograde, as was al-

ready sketched in Fig. 3.13. Incidentally, the solubility curves of impurities/dopants in

any crystalline material show always such retrograde behavior too. Fig. 3.29a repre-

sents the magnified existence region of CdTe, combined with the Te-rich side of the T–x

phase projection. The larger the deviation from stoichiometry, the more k0Te deviates

from unity. Whereas near the CMP its value yields about 0.3, at the maximum width of

the existence region it is reduced to 10−3 – a marked divergence. Fig. 3.29b shows the

solubility curves (solidus) of selected impurity/doping elements in silicon. Also, in these

cases, the related equilibrium segregation coefficients show a distinct temperature and

concentration dependence. As an example, for the calculation of the solubility curve of

Cu, the regression coefficients are added. The value of the limiting distribution coeffi-

cient at xCu → 0, e.g., at very small concentrations is k0 limCu = 2× 10−4. It plays an impor-

tant role with regard to ultrahigh material purification.

In principle, the exact determination of the k0(T) function within the whole range

between melting point of matrix A and eutectic temperature ΔTE would need a careful

regression analysis (there are related commercial codes, e.g., packet Mathcad). For

ideal diluted solutions, the simplified equation of Romanenko (1960) can be applied in

the following form:

k0 =
k0 limB

1− xBLð Þα (3:81)

where the exponent α is determined by the formula
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α=
1

ΔSmA
R ln k0 limB + ΔSmBð Þ

� �

(3:82)

where R is the universal gas constant and ΔSmA,B are the melting entropies of A and B

components, respectively. The exponent α for each pair of A–B can have a positive as

well as negative value. Negative exponents reflect a retrograde solubility as in the

case of Cu (and another impurities) in Si, shown in Fig. 3.29b.

Usually, at standard melt growth production of compound materials, the samples

weights show only very small deviations from stoichiometry or from congruent melt-

ing point, so that one can certainly assume that only a very small excess content of

one of the components takes place. As a result, the solidus and liquidus lines are posi-

tioned still close to each other and can be linearly approximated, resulting in a con-

stant equilibrium segregation coefficient, mostly very close to unity. For instance,

Fig. 3.27c shows the segregation coefficient of Li2O3 in LiNbO3 being constant = 0.9, up

to ~1% deviation from stoichiometry. Nearly the same situation exists in the growth of

GaAs crystals provided from melt, with small As excess.

A further aspect that must be perhaps considered is the possible mutual interac-

tion between doping elements when more than one of them is added in relatively

high concentrations. Besides the component of matrix A, the additives B, C, . . ., Ni are

presented within the melt and solid. Now, it can happen that an attraction between

Fig. 3.29: Segregation phenomenon in systems with retrograde solidus lines, e.g., CdTe (a) and impurities

in silicon (b) (with permission of Elsevier (a); John Wiley and Sons (b)).

3.2 Two phases of two (or more) components 83



the dopants leads to the formation of associates with chemical bonds. Such species

affect the value of the segregation coefficient, especially when the associates as a

whole are incorporated into the growing crystal. Provided that one knows the form of

associates and their integers of stoichiometry [see. eq. (3.58)], the concentrations in

the ratio of k0 = cS=cL must be replaced by the sum of the associates within the liquid

and solid as cNiS,L =
PNi

C ðAνA
BνB

Þ
S, L

. . . ðAνA
NiνB

Þ
S, L

h i

. Such quite a rare situation was

treated in detail by Vigdorovich (1969) in his book on purification of metals and semi-

conductors given in the references at the end of this lecture part. As was pointed out

by Chernov (1984), the behavior of doped material in compound semiconductors is

particularly complicated by their interaction with intrinsic point defects Xi (interstitial

and vacancy), which are near the melting point, isolated and usually electrically

charged. As a result, the dopant solubility can be markedly influenced by complex for-

mations with the charged intrinsic point defects such as [B1+ – X 3–]2–, for example,

that would lead to differing measured values of the segregation coefficient, depending

on whether it was determined by mass or electrical analysis.

Generally, in the melt growth of contaminated and intentionally doped compound

crystals, each crystal grower must consider the acting mass-related segregation effect very

carefully because at a propagating melt–solid interface, the enrichment of an excess com-

ponent or dopant at the crystallization front and its rejection back to the melt within a

diffusion boundary layer may cause an undesirable morphological instability (see lecture

parts III).

3.2.6.2 Segregation at solution–solid phase transition

In solution growth, quasi three components – the solvent, the solid (crystallizing material),

and the solute (matrix material components, impurities and dopants in solution) – are

presented. Of course, it makes sense to apply only such solvent which shows high solubil-

ity in the fluid (solution) but being as much as possible, insoluble in the crystalline matrix.

This proves to be one of the challenges before the growth is started, to find out the best

solvent. Principally, considering the whole very wide branch of solution growth, the incor-

poration of impurities or dopants into the growing crystals is a complex combined effect

of several factors, like the chemical composition of solution, relative solubilities of host

and impurity/dopant phases, interactions between host and impurity atoms/molecules,

relative dimensions of substituting (impurity/dopant) and substituted (host phase) ions,

the similarity in crystallographic structure of the two phases, and crystallization condi-

tions such as growth temperature, supersaturation used for the growth, and concentra-

tion of an additive. All these facts determine the actual segregation coefficient of

solution–solid transitions. However, the treatment of all these miscellaneous factors here

would be too much. Reference is therefore made to the large respective literature.

Relatively well-comprehensible is the area of growth from melt–solutions, often ap-

plied for metals and semiconductors. We will limit ourselves to this branch (although

the presented approach to the segregation coefficient is also applicable to another sim-
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ple solution growth cases). In addition to the matrix element AS,L (in mole fraction xAS,L)

to be crystallized and the added solute (impurity and dopant), BS,L (xBS,L), the liquid

phase also consists of the solvent CL(xCL), which is usually not solved in the solid (xCS ≈ 0,

k0
C
≪ 1). Actually, things are then quite easy. Whereas in the crystal, the impurity/dop-

ant solubility B concerns only its relation to the matrix A, in the liquid solution, its con-

tent is related to the sum of all dissolved components, i.e., B and A, both solved in C. The

equilibrium segregation coefficient K0 of a given additive (solute) B is then

K0 =
xBS

XBL

(3:83)

where XBL is the concentration ratio of the solute BL to the sum of the solved elements AL

and BL, whereby at very low concentration of BL the concentration of the predominant

solved component AL in solution CL can be expressed by the mole fraction xAL ≈ 1 – xCL

so that

XBL =
xBL

xAL + xBLð Þ =
xBL

1− xCLð Þ+ xBL½ � (3:84)

Due to xBL ≪ xAL, eq. (3.84) can be approximated as

XBL =
xBL

xAL
=

xBL

1− xCLð Þ (3:85)

with xAL the mole fraction of the matrix component AL solved in the solvent CL. Sub-

stitution of (3.85) into (3.83) results in the equilibrium distribution coefficient at

solution–solid transition

K0 =
xBS

xBL
xAL =

xBS

xBL
1− xCLð Þ= k0 1− xCLð Þ (3:86)

where k0 is the equilibrium segregation coefficient of the given impurity or dopant ele-

ment near the melting point, i.e., at melt–solid transition [eq. (3.80)], assuming that the

concentrations [B]≪ [A], [C] (in the literature, often the symbol Do is used instead of K0).

From eq. (3.86), it follows that in growth from solutions, the segregation coeffi-

cient of a given added element (impurity and dopant) K0 is reduced in comparison to

the growth from melt when k0 < 1. In other words, the effect of impurity purification

is enhanced in growth from solution due to their increased solubility and, thus, reten-

tion in the liquid solution. In fact, significant purification effect in growth from

melt–solution has been described in the literature. This is also traceable when looking

at the ternary-phase diagrams in Fig. 3.25 though close to the B corner.

In some cases, the solubility of the solvent in the crystalline phase cannot be ne-

glected. Then, eq. (3.83) must be modified by replacing the denominator xBS with XBS,

the concentration ratio of the solute BS to the sum of solutes (AS + BS). In fact, such

situation takes place when compound crystals AB are growing from melt–solutions in

which one constituent A or B acts as solvent. Such growth principle is commonly used
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by the LPE or THM techniques to many compound and mixed crystals, like AlSb from

Al, (Ga,Al)As from Ga, GaN from Ga, (Cd,Zn)Te from Te, or even oxides by top-seeded

solution growth (TSSG) like (Ba,Sr)TiO3 from TiO2, LiBaF3 from LiF, a.s.o. In order to

prevent confusion with the solvent B in such cases, the symbol for the impurity/dop-

ant should be replaced by a differing character , for example. Due to the width of

the compound existence region ±Δδ [see Section 3.2.4.2.1; eq. (3.60)], in addition to the

impurity/dopant , a certain excess of the solvent A or B is also solved in the solid

phase AB (see, e.g., Fig. 3.29a). It is therefore possible that an excess of solvent B is

realized by vacancies in the sublattice A, as often observed in reality. As a result, the

vacancies are filled with impurity/dopant atoms , which means that their incorpo-

rated content is dependent on the degree of deviation from stoichiometry. In other

Tab. 3.3: Comparison of the experimentally obtained equilibrium segregation coefficients at growth from

melt–solution K0 with the segregation coefficient near the melting point of the matrix crystal k0 for
selected materials, where the K0 value is reduced compared to k0 < 1 (with permission of Springer Nature,
Elsevier (Science Direct), and Wiley).

Crystal

(matrix

A)

Additive

in matrix

A (impurity/

dopant)

k0 of at

Tm (melt

growth)

Solution

growth

method

Solvent

B

K Relation

K/k

References

Si In  × 
–

. × 
–

THM

–, °C

In  × 
–

 × 
–

.

.

W. Scott, R.J. Hag-

er, J. Electron. Mat.

 () 

GaAs Sn  × 
– LPE

– °C

Ga . × 
–

. J. Vilm, J.P. Garrett,

Solid-State Electro-

nics  () .

ZnSe Ga

Cu

.

.

LPE

– °C

Sn .

.

.

.

T.F.McGee et al.,

J. Crystal Growth 

() 

CdTe In

Cl

Ag

Mg

.

.

.

.

VB from Te-

rich

melt–solution

 °C

Te .

.

.

<.

.

.

.

.

K. Zanio, in: R. Wil-

lardson, A. Beer

(eds.) Semicond.

and Se-mimetals

 (Acad. Press,

N.Y. ).

YAG Nd (x = .)
Nd (x = .)

. Dipping LPE

– °C

BO–

PbF–

PbO

.

.

.

.

M. Sturge et al.,

Mat. Res. Bull. 

() 

The k0 values in the matrix materials near melting point Tm are taken from: V.M. Glazov, V.S. Semskov,

Fizikokhimich. osnovy legirovanija poluprov (Nauka 1967); O. Madelung, Physics of III–V Compounds

(J. Wiley 1964); H. Hartmann et al., in: E. Kaldis (ed.) Current Topics in Mat. Sci. 9 (North-Holland 1982);

L. Kuchar et al., J. Crystal Growth 161 (1996) 94; M. Sturge et al., Mat. Res. Bull. 7 (1972) 989.
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words, the segregation coefficient of is a function of the deviation from stoichiome-

try, the degree of which is determined by the growth temperature (see Figs. 3.13 and

3.19a). In fact, years ago, the author and his team detected, by PL, an increasing con-

centration of silver atoms on the sides of the Cd-sublattice in CdTe crystals with in-

creasing deviation from stoichiometry toward Te-rich site.

Figure 3.30 shows a practical example of the reduction of the axial dopant distribu-

tion curves for important donors In, Cl, and Sn in a CdTe crystal in the growth with a

melt–solution zone of the solvent tellurium by THM. In comparison with the single-pass

curves for the melt zone growth, inserted in the graphic at the top right (well-known as

Pfann distribution curve), the distribution coefficient k0 was replaced by the equilib-

rium distribution coefficient for solution–solid transition K0 according to eq. (3.86).

Since the solvent Te is a component of the AB compound crystal CdTe, it becomes

here the notation B and the dopants . Selecting the melt–solution zone temperature

800 °C, the mole fraction of Te in the system Cd–Te is xTe = 0.83. However, due to the

solvent role of Te versus the compound CdTe, its mole fraction calculates within

half of the system AB(CdTe)–B(Te) according to eq. (B3.2-3) in Spec box 3.2 to be

yTeL = 2− 1=xTeL ≈ 0.8 and, thus, the K0 values of the dopants becomes, according to

eq. (3.86), K0 = k0ð1− yTeLÞ≈ 0.2 k0.

Fig. 3.30: Reduction of axial dopant distribution in a CdTe crystal after single pass of a Te-rich

melt–solution zone compared to the melt zone (with permission of Springer Nature).
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In fact, the obvious enhanced purification effect at the growth from melt–solution

proves to be favorable for impurity cleaning but adverse for the axial distribution of

dopants, showing an enhanced inhomogeneity even at very small K0 values, like in

the case of Sn (see Fig. 3.30).

Note, when the additive B is a mixed crystal component in the matrix A as A1–xBx,

usually its mole fraction share xBL is no longer negligible as was assumed by eq.

(3.84). Therefore, eq. (3.86) must be extended by the addition of the quotient xBS=k0.

This is of significance for the popular growth of Cd1–xZnxTe crystals from tellurium-

rich melt–solution by THM, taking into account that k0 (Zn) > 1.

3.2.6.3 Segregation at vapor–solid phase transition

Usually, at the transition from the vapor to the solid phase, the effect of segregation is

much more pronounced. The description of the concentration difference of a given

added element B (impurity and dopant) in a matrix A via an equilibrium coefficient

of segregation (or distribution) between solid (S) and vapor (V) phases is

kVS0 =
xBS

xBV
(3:87)

with xBS = nBS/(nBS + nAS) and xBV = nBV/(nBV + nAV) the mole fractions (given here in com-

ponent quantities niS,V) in the solid and vapor phases, respectively. However, whereas

the indication of the component quantity (or concentration) in the crystalline phase is

relatively simple, its determination within the gas phase proves to be somewhat more

complicated. First of all, one has to consider the incommensurable much lower density

of each vapor phase, compared to the condensed one (ρV ≪ ρS,L). Then, only within a

closed system, where the growing crystal and vapor are enclosed in an ampoule or

tight container, an equilibrium situation can be assumed. In comparison, in open gas

transport systems, the quantities (densities) of the matrix element to be crystallized and

the intentional as well as the unintentional additives quasi predetermined in transport

agents are mostly not in equilibrium (supersaturated) with the crystal state. Therefore,

the strong thermodynamic xBS/xBV equilibrium will occur only within the interface re-

gion and correlates with the kinetic processes such as surface diffusion, adsorption-

desorption, and atomistic interface structure (see lecture part II).

However, a phenomenological treatment is quite possible. In the vapor–solid phase

transition, it makes sense to correlate the segregation (distribution) with the partial

vapor pressures of the constituents within the gas phase. Usually, they differ signifi-

cantly. For instance, whereas the partial pressure of solid silicon at 1000 °C is psi = 10
–8 at

(≈10–4 Pa), at the same temperature, Cu, Al, and Fe evaporate with pCu = 10
–4 at (≈10 Pa),

pAl = 10
–5 at (≈1 Pa) and pFe = 10

–6 at (≈10–1 Pa), respectively. Regarding these metals as

impurities in silicon, a marked separation effect is occurred at its sublimation. Therefore,

the sublimation-condensation in an open system is used as very effective measure of ele-

ment purification already for a long time. Accordingly, it is more convenient to replace
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in the relation of the segregation coefficient [eq. (3.87)], the mole fraction (component

quantity) of the vapor phase by the relation of the Raoult’s Law pB = xBV p0B with pB the

partial pressure of the component B in the gaseous mixture, and p0B the vapor pressure

of the pure component B (see Fig. 3.15). Then, it becomes

xBV =
nBV

nBV + nAV
=

pB

p0B
(3:88)

and

kVS0 =
xBS

xBV
=

nBS
nBS + nAS

nBV
nBV + nAV

=
xBS
pB
p0B

=
xBSp0B

pB
(3:89)

The distribution coefficient at vapor–solid transition plays an important role in the

treatment of epitaxial processes of ternary mixed crystal systems. Its proper control

ensures the layer deposition with homogeneous composition. Stringfellow (1980) cal-

culated the vapor–solid distribution coefficient for metal-organic chemical vapor

phase deposition (MOCVD) of mixed III–V semiconductor systems, such as Ga1–xAlxAs.

Using trimethylgallium (TMGa), trimethylaluminium (TMAl), and AsH3 as transport

agents and assuming the equality between the diffusion coefficients of Ga and Al in

the vapor, the ratio of xAlAsS to xAlv was found to be approximately unity.

kVS0 =
xAlAsS
xAlv

=
xAlS

pTMAl
0 = pTMAl

0 + pTMGa
0

� �� � ≈ 1. (3:90)

A similar kV0 value was found for all alloys, where mixing occurs on the group III sub-

lattice, such as Ga1–xAlxSb and In1–xGaxAs, for example. At normal growth tempera-

tures, the partial pressures of Al, Ga, and In proved to be nearly zero at the growing

interface with V/III ratio ≫ 1. In comparison to that at the growth of alloys with mix-

ing on the group V sublattice, such as GaAs1–xSbx, the value of kV0 was found to be

smaller than unity, especially at lower temperatures.

3.2.6.4 Segregation at vapor–liquid-phase transition

In all crystal growth processes from melt and solutions, a further phase boundary has

to be considered – the vapor–liquid interface. Also, a separation effect can occur

here. This concerns the incorporation of impurities or dopants from the gas phase or

their evaporation, often technically used in melt refining processes. As was already

discussed in Section 3.2.4.2.3, in some vertical melt-growth arrangements, like VB,

VGF, and Kyropoulus techniques, there is a missing direct contact of the melt–solid

interface with the gas atmosphere. In such cases, the front of crystallization is totally

covered by the melt column. Especially, for the control of stoichiometry in growing

compounds by the overpressure of the volatile component, the vapor species must

overcome the effect of vapor-melt separation, their transport through the melt toward
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the growing crystal, and the melt–solid segregation at the propagating interface (see

Section 3.2.4.2.3). Additionally, one has to consider the volatility of doping and impu-

rity elements even through the liquid-gas interface that influences their assumed

starting concentration, being important for the estimation of the axial and radial seg-

regation curves in the growing crystal. Such a system is referred to as an open or non-

conservative (more details are given in the lecture part III).

The segregation effect at the vapor–liquid interface can be estimated as following

(see also Spec box 3.6). When a substance B (dopant and impurity) goes into solution

with a solvent of the matrix element A at temperature T (for instant at melt tempera-

ture of A), the partial vapor pressure values of both elements A and B change from

p0B,A to p
eq
B,A. If the vapor above the solution shows an ideal behavior, the ratio of the

vapor pressures represents the B and A activities as

aB,A =
p
eq
B,A

p0B,A
= γB,AxB,A (3:91)

where γB,A is the activity coefficients and xB,A the related mole fractions. Under equilib-

rium conditions without T inhomogeneities along the vapor–liquid interface becomes

p
eq
B

p
eq
A

= kVLB
xB

xA
(3:92)

where kVLB represents the separation (segregation) coefficient of the added element B

between vapor and liquid as

kVLB =
p0B
p0A

γB
γA

(3:93)

If kVLB is equal to unity, the concentrations of B in liquid and vapor are equal, and no

separation occurs. When kVLB < 1, the equilibrium concentration of B in liquid A is more

than that in the gas phase. As a result, an impurity B cannot be separated by partial

evaporation. In contrast, when kVLB > 1, the separation of an impurity B from a liquid A is

possible. For instance, in molten silicon of Raoultian behavior (γA = γSi ≈ 1), the activity

coefficients γB of Al, Fe, Na, and P are 0.37, 0.014, 0.466, and 0.4522, respectively. Thus,

purification from these elements by evaporation would not be possible. On the other

hand, an effective fractionation turns well for the elements Zn, Bi, and B showing γB val-

ues of 1.471, 29.68, and 3.896, respectively. This proves to be of importance for the produc-

tion of high-purity silicon feedstocks for electronics and photovoltaics, for example.
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4 Surfaces, phase boundaries, and interfacial

effects

4.1 Determination of the surface free energy

Crystal growth processes are interconnected with propagating phase boundaries or

rather interfaces. In case of vapor–solid transition this is realized by the surface of the

growing crystalline phase. At melt–solid, solution–solid, and solid–solid transition

this is often termed front of crystallization. One of the targets of thermodynamics con-

siders the equilibrium shape of a growing crystal surrounded by a high-purity homo-

geneous voluminous fluid mother phase.

Each surface of a crystal is a cross-discontinuity and has a free energy associated

with it. The value of this free energy depends on the orientation and specific state of

the face and on the other phase in contact (vacuum, fluid). Dangling unsaturated

bonds enhance the free potential of Gibbs as sketched in Fig. 4.1. As a result various

inherent processes of energy minimization are activated. For instance, the inter-

atomic forces drive the free bonds to saturate jointly by turning into the given surface

plane. As a consequence, the atoms near the surface modify their positions differing

from spacing and symmetry of the bulk atoms, creating a different surface structure

with enhanced Gibbs surface potential ΔGsurf (see Fig. 4.1). Such change in equilibrium

positions near the surface represents a kind of relaxation, which belongs to atomically

clean surfaces in vacuum and is categorized as reconstruction. On the other hand, at

the interaction with another medium the relaxation by adsorption occurs. Thus, the

energetic situation along the surface area is changed compared to the crystal volume,

leading to the formation of a surface energy. According to a general definition, it is the

reversible work required to create a unit area of surface. The surface energy defined

per unit area is comparable to the surface tension. Surface tension is defined as the

force parallel to the surface perpendicular to a unit length line drawn on the surface

and, therefore, also defined as energy per unit area.

When the surface is in contact with another solid/crystalline phase, e.g., at hetero-

epitaxial thin-film arrangements, the free surface energy results from the differences

in the crystallographic structure and tendencies of each solid phase to attract its own

atoms or molecules and it is more correct to name it interface energy. According to

the simple Gibbs model this energy of a very thin transitional region with mostly mis-

fit restrain results from the difference between the internal total system energy and

the energy contributions of the two contacting solid phases per interface area as

sketched in Fig. 4.1. Of course, there is also an interface between a solid and liquid or

vapor phase.

Therefore, in the processes of crystallization we have to consider this new surface

and interface-related thermodynamic parameter. That means the potential functional-
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ity of the Gibbs free energy in eq. (3.9) must be extended by the parameter of surface

area A as

G= f T, p, ni,Að Þ (4:1)

In compliance with eq. (3.10), the total differential of the Gibbs free energy is then

dG=
∂G

∂p

�
�
�
�
T,ni

dp −
∂G

∂T

�
�
�
�
p,ni

dT +

XK

i=A

∂G

∂ni

�
�
�
�
p,T

dni +
∂G

∂A

�
�
�
�
p,T

dA (4:2)

whereas the new differential quotient means that for an enlargement of the area A by

the differential value dA, a work needs to be done against the surface (or interface)

activity (or tension) expressed by the surface-related partial derivative

∂G

∂A

�
�
�
�
p,T

= γ (4:3)

where γ is the surface free energy or surface tension (note, in the literature γ is often

replaced by the symbols σ or α).

The surface energy is defined as the energy per unit surface area, i.e., of the bond

strength along the surface. It can be defined as the energy difference between the

bulk of the material and the surface of the material. Otherwise, the surface tension is

Fig. 4.1: Surface and interfacial effects on a crystal contour requiring the consideration of a new energetic

parameter γ.
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mostly used to define the net intermolecular force on the surface molecules of a liq-

uid. Compared to the molecules in the center of a liquid volume those on its surface

are packed due to unbalanced intermolecular forces. Thus, there is an enhanced en-

ergy density at the surface of a liquid too. Both, surface energy and surface tension

have the same dimension J/m2.

In the case of a liquid droplet (or gas bubble) the surface energy (tension) is of

isotropic character being constant over the entire surface and, thus, the surface en-

ergy and tension are identical. In contrast, at a crystal the surface energy shows aniso-

tropically due to the differing atomic surface arrangement perpendicular to the crys-

tallographic orientation. Its variance along the various crystal faces is expressed by

γhkl with the subscripts hkl denoting the Miller’s indices. Therefore, strictly speaking,

for crystals the surface energy is not exactly equal to the surface tension. Defining the

surface tension as the work necessary to increase the area by unit amount, it proves

to be not more the same reaction on the work in all directions, especially in the cases

of highly anisotropic crystal structures.

We have also to differ between the surface energy in one-component and multi-

component systems. As we introduced above, the adsorption by foreign atoms or mol-

ecules represents the contact of a given crystal with a multicomponent fluid phase.

Then the free surface energy is a function on the presented foreign component mole

fraction xi and its value is extended by the sum of chemical potentials of the addi-

tives as

γ xið Þ= γ0 +
X

i

Γ iμi (4:4)

where γ0 is the energy of a clean surface in a one-component system, µi the chemical

potential of the i-component, and Γi the coupling factor representing the functional

dependence of the surface energy on the concentration (mole fraction) of the i-

component:

Γ i = −
xi

RT

∂γ

∂xi

� �

(4:5)

Substances (adsorbents) that reduce the surface energy (∂γ/∂xi < 0) preferably accu-

mulate there (Γi > 0) and are acting as surface-active substances. In the opposite case

ð∂γ=∂xi > 0; Γ i < 0Þ the substances behave surface-passive and are rather rejected

(desorbed).

How to determine the surface energy? Its measurement in a liquid is simple due

to its conformity with its surface tension, and a variety of techniques exist to measure

liquid surface tension, e.g., by pendant drop method. However, determining the sur-

face energy of a solid (crystal) is not nearly as simple because it cannot be directly

measured. The surface energy values are calculated from a set of liquid-solid contact

angles, developed by bringing various liquids in contact with the solid. For that, one

must have prior knowledge of the surface tension values of the liquids that are used
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as well as to consider specific surface interactions, surface reactivities, and surface

solubilities. Then Young’s equation can be used

γS = γSL + γL cosθ (4:6)

where γS is the overall surface energy of the solid, γSL the interfacial tension between

the solid and the liquid, γL the overall surface tension of the wetting liquid, and θ the

contact angle between the liquid and the solid. Due to the impracticality of obtain-

ment of a universal set of liquids for use in testing solid surfaces, it is currently ac-

cepted that the most accurate values for surface energy of solids can be approximated

from theoretical calculations.

Starting with the historical approach, Turnbull ascertained in 1950 during his

study of maximum supercooling of metal droplets (see Section 5.1.1) that there is a

correlation between the surface energy and enthalpy of fusion. Since Δh is a molar

quantity it can be compared with the gram atomic surface energy between solid and

liquid γSLm , which may be defined as the free energy of an interface A containing Avo-

gadro’s number NA. Assuming arbitrarily that the interface is one-atom thick and Vm

is the molar volume then A=N
1=3
A V2=3

m and the molar interface energy becomes

γSLm = γSLA= γSL N
1=3
A V2=3

m . It was observed that γSLm is equal to about one-half of the la-

tent heat of fusion per atom ðγSLm ≈ 1=2 ΔhÞ for metals, and about one-third for water

and organic compounds (Turnbull’s rule). Correlating the factor of proportionality

with the degree of nearest neighbors’ occupation Brice proposed 1986 an analogous

approximation as

γSL = γSLm =A= 1−w=uð ÞΔhm N
−1=3
A V −2=3

m (4:7)

where u is the number of nearest neighbors for an atom inside the crystal and w is

the number of nearest neighbors for an atom on the surface (w < u).

Today, computational techniques, such as first principles computations based on

density functional theory (DFT), provide the means to precisely control the surface

structure and composition of a material. Principally, fundamental- and application-

driven computational studies of surfaces in the literature are extensive. The standard

structure used to calculate surface properties from first-principles is the surface slab

(slide) – a supercell representing an infinite two-dimensional thin film oriented to ex-

pose the facet of interest, separated from periodic images by a large vacuum. The slab

should be thick enough so that there is no interaction between opposite surfaces

through the bulk, and the vacuum distance between slabs should be increased until

there is no more interaction between adjacent slabs. For a converged, clean slab in

vacuum, the surface energy can be defined as

γS =
1

2A
Eslab −NEbulkð Þ (4:8)
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where A is the area of the surface unit cell, Eslab is the energy of the slab supercell,

Ebulk is the bulk energy per atom, and N is the number of atoms in the surface slab.

The 1/2 pre-factor accounts for the two surfaces of a slab. One of the overviews has

been published by Schultz in 2021.

4.2 Gibbs–Thomson equation

Next we have to clarify on which influencing factor is the free surface energy during

crystal growth processes. Sure, the answer lies in the size relation, more precisely, in

the proportion between surface and volume share of a given crystal. Starting with the

simplest example of a liquid droplet within a gas phase Laplace showed in 1805 that

the surface (interface) energy of a curved interface between both liquid (L) and vapor

(V) phases, γLV causes the pressure difference between both phases as

pL − pV =
2γLV
r

(4:9)

where r is the droplet radius. Thus, the pressure in a small droplet (r → 0) is always

higher than that of the surrounding vapor. The ratio 2γLV=r becomes zero when the

phase boundary is flat (r → ∞) and pL = pV.

The Gibbs–Thomson equation uses this effect for the difference of the chemical

potentials of the vapor µV and of a spherical droplet µL of a one-component system at

constant temperature as

μV − μL = Δμ=
2γLV
r

ΩL (4:10)

where ΩL is the molar volume in the condensed phase (note, in the name “Gibbs–

Thomson” equation, “Thomson” refers to J. J. Thomson, not William Thomson/Lord

Kelvin). The detailed derivation of the Gibbs–Thomson equation is given in the Spec

box 4.1.

Spec box 4.1: Derivation of classic Gibbs–Thomson equation

At the presence of a liquid (L) droplet in thermodynamic equilibrium with a surrounding vapor phase

(V) at constant pressure p and temperature T the differential of Gibbs equation (4.2) becomes

dG= μVdnV + μLdnL + γLVdA= 0 (B4:1‐1)

When the system is closed nL + nV = const and dnL + dnV = 0 as well as dnL = − dnV the eq. (B4.1-1) be-

comes

μV − μL = γLV
dA
dnL

(B4:1‐2)
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Setting for the interface area A= 4π r2 and for the atom quantity within the droplet (the quasi volume

part) nL =
4

3

πr3

Ω L
where ΩL is the molar volume, and differentiating dð4πr2Þ=d 4

3
πr3

� �

the equation of

Gibbs–Thomson becomes

μV − μL =Δμ=
2γLV ΩL

r
(B4:1‐3)

Drawing the Δµ = f(r) function (Fig. 4.2a), one sees that the potential difference is exponentially de-

creasing with increasing radius. That means the influencing factor of the free surface energy increases

with reducing (droplet) size due to the decisional factor of the curvature strength.

Figure 4.2a shows the functional dependences Δµ(r) according to eq. (4.10) of silicon,

mercury, and water droplets within their own vapor phase. The smaller the droplet

radius the higher is the potential difference. It can be concluded that the existence of

a positive interfacial energy will increase the energy required to form small droplets

with high curvature, and these droplets will exhibit an increased chemical potential.

In Section 5.1, we will show that the Δµ is identical to the supersaturation.

Fig. 4.2: Chemical potential and undercooling versus droplet and particle diameters influenced by surface

energy of selected materials (the portrait of P.S. Laplace and J.J. Thomson are public domains; with permission
of Springer Nature (a); free to use from ISIJ Int.(b)).
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Let us assume a pure one-component solid (S) spherical phase of radius r situated in a

large liquid phase (L) of the same component. Then at given temperature T eq.

(4.10) is

Δμ= μL − μS = hL − TsLð Þ− hS − TsSð Þ= 2γSL
r

ΩS (4:11)

where γSL is the surface (interface) energy between the crystalline and melt phases

and ΩS the molecular volume in the solid phase. After conversion eq. (4.11) becomes

hL − hSð Þ= ΔhLS = T ΔsLSð Þ+ 2γSL
r

ΩS (4:12)

where ΔhLS is the transition enthalpy (latent heat of fusion) at transition (melting)

temperature Ttr = Tm (see Section 2.2) and ΔsLS the transition entropy. According to eq.

(2.9) ΔhLS can be substituted by Tm ΔsLS. After some conversion of eq. (4.12) the de-

pressed melting point of a microcrystal becomes

T = Tm −
2γSLΩS

rΔsLS
or rather Tm − T = ΔT =

2γSLΩS

rΔsLS
(4:13)

This variation of the classical Gibbs–Thomson equation describes the equilibrium

melting point at which a solid “spherical” crystal of radius r has the same Gibbs en-

ergy as that of the surrounding large one-component liquid phase. In other words, a

small crystal of equilibrium size has the same Gibbs free energy as that of the macro-

scopic liquid phase at a given T. Figure 4.2b shows the molecular dynamic (MD) simu-

lated depression of the crystallization temperature T from the bulk melting point

Tm − T = ΔT as function of the radius r of Ni and Cr particles. As can be seen the

“undercooling” is enormous when the radius amounts only a few nanometers. Thus,

in the sphere of nanocrystal growth the melting point is reduced to be considered in

the respective phase diagram. This important relation we will meet again when the

critical radius of a formatting nucleus is treated in Chapter 5.

It is clear that one cannot readily apply the classical Gibbs–Thomson equation

(4.10) for isotropic cases to polyhedral crystal consisting of faces with their own spe-

cific surface free energy varying with the orientation of the surface relative to the

crystal axes. Thus, an anisotropic crystalline solid will, in general, have a specific sur-

face free energy, which varies with the crystallographic orientation. Here we will

adapt some simple relations from the review of Johnson (1964) only. When denoting

the surface orientation by the vectorial unit normal to the surface n̂ then the specific

surface free energy is γ= γðn̂Þ. Considering a crystallite of a pure substance (S) in

equilibrium with its surrounding fluid phase (F), and having therefore the equilib-

rium shape, compared to the droplet form of radius r the size of the crystallite is spec-

ified by the value ℜ (n̂) – a radial vector to the crystal surface for any direction n̂.

Therefore, eq. (4.10) is substituted by
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μF − μS = Δμ=
2γ n̂ð Þ
ℜ n̂ð Þ ΩS (4:14)

where ΩS is the molecular volume in the crystal. Equation (4.14) represents the gener-

alization of the Gibbs–Thomson equation for crystals having full inversion symmetry

in equilibrium with their surrounding fluid (mother) phase. According to this equa-

tion the chemical potential of the fluid in equilibrium with a small crystal is directly

proportional to the specific surface free energy of any given surface orientation n̂ and

inversely proportional to the width of the crystal (the distance between the parallel

planes tangent to the body at opposite sides) for the same orientation n̂. The equation

is valid for polyhedral equilibrium bodies as well as for smoothly curved equilibrium

bodies. It is apparent that for a spherical equilibrium body with ℜ ðn̂Þ → r and isotro-

pic surface free energy (γ n̂ð Þ ! γFS) eq. (4.14) becomes analogous to eq. (4.10).

4.3 Equilibrium shape of crystals

In the following the anisotropic approach of the equilibrium shape of crystals will be

somewhat more specified. To understand and simulate the equilibrium shape of a

growing crystal proves to be one of the fascinating subjects of physical, especially

crystallographic research, not least because of its proximity to art and aesthetics. Ac-

cordingly, it turns out to be a long-term subject of thinking, interpretation, and model-

ing until today. Even with the advent of the nanocrystal preparation it became signifi-

cant due to the dominating role of the surface energy in relation to the volume part,

respectively (see Fig. 4.2a and b). Therefore, there are several treatments, reviews,

and textbooks. Here we will give a short insight into the basic features only.

In 1878, Gibbs proposed that a crystal will arrange itself such that its surface free

energy is minimized by assuming a shape of minimum surface energy. According to

eqs. (4.2) and (4.3), by exclusively considering the surface related term he defined

ΔGi =

X

j

γjAj ! min (4:15)

where γj is the surface (Gibbs free) energy per unit surface area Aj of the jth crystal

face. ΔGi represents the difference in energy between a real crystal composed of imol-

ecules with a surface and a similar configuration of i molecules located inside an infi-

nitely large crystal. This quantity is therefore the energy associated with the surface.

From a crystallographic point of view the summation is performed along all hkl crys-

tal plane (Miller) indexes, with the hkl-dependent surface energy and the specific sur-

face area of each plane. Thus, the subscript j can be replaced by hkl.

In 1901, Wulff outlined his geometrical interpretation without proof whereupon

in thermodynamic equilibrium the distance of each crystal face from an assumed
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point within the crystal is proportional to the corresponding specific surface energy

of this face. According to this Wulff’s theorem, depicted in Fig. 4.3a, one can draw vec-

tors normal to all possible crystallographic faces from an arbitrary point P having the

length hj proportional to the corresponding surface energy γj. Then at the vector tip a

perpendicular line is drawing representing the given crystal face fj. After all vector-

face sets are sketched, inside the crossing face lines representing the continuous se-

quence of minimum surface energies γmin a closed polyhedral envelope (bolt blue

contour) is formed to be equated with the equilibrium shape as it is sketched for the

two-dimensional case in Fig. 4.3a. As can be seen, the perpendiculars f3 of the longest

vectors h3 representing the largest surface energy γ3 cannot contribute to the equilib-

rium contour by any face formation due to their too high γ3 values. The geometrical

interpretation confirms the relation

hj

γj
= const or rather γ1 : γ2 : γ3 . . . = h1 : h2 : h3 . . . (4:16)

Fig. 4.3: Wulff’s constructions to determine equilibrium crystal shape; a – starting from center and b –

deducing from γ n̂ð Þ contour (the portrait of G.V. Wulff is reproduced with permission of IUCr Newsletter 30
(2022) No. 2; the portrait of W.C. Herring is a public domain; the Wulff plot is in the public domain of Wikipedia).
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Corrected proofs of this theorem were subsequently given by Hilton (1903), Liebmann

(1914), and, especially recommended, von Laue (1943). The simplest one of Hilton is

demonstrated in the Spec box 4.2.

Spec box 4.2: The constancy of hj/γj ratio

The volume of the crystal can be considered as a sum of the volumes of pyramids constructed on the

crystal faces Aj with a common apex hj in the arbitrary point P [hatched area in Fig. (4.3a)] as

Vcr =
1

3

X

j

hjAj (B4:2‐1)

For a very small change in shape for a constant volume without varying the surface free energy, then

δVcr =
1

3
δ
X

j

hjAj

 !

= 0 (B4:2‐2)

which can be written, by applying the product rule, as

X

j

hjδAj +
X

j

Ajδhj = 0 (B4:2‐3)

whereas the second term must be zero if the volume remains constant. In other words, the changes in

the heights of the various faces must be such that when multiplied by their surface areas the sum is

zero. That means it remains

X

j

hjδAj = 0 (B4:2‐4)

The condition of surface energy minimization [see eq. (4.15)] is for a given volume when

δ
X

j

γjAj

 !

Vcr

=

X

j

γjδ Aj
� �

Vcr
= 0 (B4:2‐5)

because surface free energy as an intensive property does not vary with volume. Considering eq.

(B4.2-5) and employing a constant of proportionality λ, eq. (B4.2-4) becomes

X

j

hj − λγj

� 


δAj = 0 (B4:2‐6)

The change in shape δ Aj
� �

Vcr
must be allowed to be arbitrary, which requires that hj = λγj or hj/γj = λ, a

constant being equal for all face areas Aj and relating to the crystal volume only.

Although such a simple design of the so-called Wulff’s plot shown in Fig. 4.3a is of suf-

ficient comprehensibility, even for beginners, it does not turn out to be quite correct.

Such plot corresponds to the zero temperature only. At finite temperature its sharp

corners tend be rounded. In 1953 Herring introduced a more correct chronology of

Wulff’s construction sketched in Fig. 4.3b. To begin, a polar plot of surface energy as a

function of orientation is made (red contour in Fig. 4.3b). This is known as the

“gamma plot” and is usually denoted as γ n̂ð Þ contour (or Wulff plot) with n̂ the surface

normal belonging to a particular face. The second part is the Wulff construction itself

in which the gamma plot is used to determine graphically, which crystal faces will be
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present. Toward this end, lines from the origin to every point on the gamma plot are

drawn. Then, perpendiculars t to the normals are drawn toward each point, where it

intersects, as tangent, the gamma plot by the radius r from the center. This point is

now determined by two angles, i.e., the tangent related θ between y-axis and normal

n̂ and φ between y-axis and r. The inner envelope of all these t-lines, representing de

facto the crystal faces, forms the equilibrium shape of the crystal often named γ(θ,φ)

plot (blue contour in Fig. 4.3b). In this way quasi-rounded crystal regions are recog-

nized tangentially. The first step, however, i.e., the construction of γ n̂ð Þ contour

proves to be somewhat extensive requiring the integration over the whole hkl-

belonging face energies of the given crystal structure (see related review papers and

textbooks).

Another decisional insufficiency of Wulff’s energetic minimum shape is that it is

exclusively based on atomically smooth, so-called singular faces. However, even faces

with low surface energy tilted from a singular face by a small angle are not flat on the

atomic scale but are stepped. Such steps and terraces that exhibit areas are named

vicinal faces. Figure 4.4 shows a macroscopically quasi-rounded crystal contour

(dashed line) with normal vectors n̂, which on microscopical scale is partitioned into

a central singular and sideward vicinal faces sloped by the small angle Θ. The specific

surface energy of such a stepped face is the sum of the surface energy of the (atom-

ically smooth) terraces γj0 (being identical to those of the singular central face) and

that of the steps ωjst/a, with ωjst the work required to create a unit length of the step

and a the step height. Assuming a constant terrace width and a small slope angle the

specific surface energy of such vicinal face is

γvic Θð Þ= ωjst

a
sinΘ + γj0 cosΘ (4:17)

and for the vicinal face being symmetric to the first one but tilted by an opposite

angle – Θ

γvic −Θð Þ= −
ωjst

a
sinΘ + γj0 cosΘ (4:18)

The polar diagrams of the surface energy for a simple-cubic crystal (at T = 0) are

sketched by Chernov (1984) in the Fig. 4.5. The γvic(±Θ) functions from eqs. (4.17) to (4.18)

in orthogonal coordinates are represented in Fig. 4.5a. As can be seen the γvic(±Θ) func-

tion shows discontinuities of the first derivatives (dγvic/dΘ) for Θ ≤ 0 ≤Θ at Θ = 0, ±π/2, ±π

named singular points. In Fig. 4.5b the same function is plotted in 2D polar coordinates

consisting of circular segments and singularities at Θ = 0, π/2, and 3/2π. Figure 4.5c repre-

sents the three-dimensional depiction taking into account first neighbor interactions

only. The graph consists of 8 spherical segments with 6 singularities coinciding with 6

atomically flat (singular) faces. Finally, Fig. 4.5d shows the polar diagram of specific sur-

face energy considering the first-neighbor and second-neighbor interactions together. In

a simple cubic crystal the bonds of the second neighbors are directed at an angle of π/4
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with respect to the first-neighbor bonds. Therefore, the polar diagram γ(Θ)2 belonging to

the much weaker second-neighbor bonds is inscribed in the first one γ(Θ)1 and rotated

with respect to it by an angle of π/4. The sum of both functions along the outmost con-

tour γ(Θ)1 + γ(Θ)2 generates additionally to the (100) singularities shallower singularities

of (110) faces. Inside of all singular minima comes up the polygon of equilibrium surface

energy (sketched in blue). In the three-dimensional case a polyhedron consisting of the

equivalent plane families {100} and {110} arises. Typical minimum values of γ(Θ) at

crystal–melt and crystal–vapor interfaces are in the ranges 0.1–1.0 J/m2 and 1.0–10 J/m2,

respectively. In solutions the γ(Θ) function is somewhat modified by adsorption effects

of the solvent atoms or molecules at the growing interface and decreases or increases if

the solvent is surface-active or -passive, respectively (see Section 4.1). Of course, taking

into account the bond states and more distant neighbors in the 7 crystal systems, includ-

ing 14 Bravais lattices, more differentiated and complicated polar diagrams with related

surface equilibrium shapes will result. Some related suggestions even in the case of

nanocrystals are given in the excellent book chapter of G. Guisbiers and M. Jose´-

Yacaman (2018).

Thus, compared to Wulff`s plot now the depiction takes the following correct

chronology: one begins by creating an accurate polar plot of the surface free energy

Fig. 4.4: Images of vicinal (stepped) faces at a Zn micro crystal (a) and silicon LPE film (b). Determination

of the surface energy of vicinal faces γvic deviated from singular face by a small angle θ (c) (with permission
of Elsevier (a and b) and Springer Nature (c)).
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as a function of orientation angle, i.e., the γ(Θ) function often called surface energy

rosette, and draws a perpendicular inside plane contour through the tip of each mini-

mum. The equilibrium shape is then designed by the interior envelope of these planes

(e.g., in 2D lines).

It is important to point out that in reality the surface free energy-determined

equilibrium crystal shape is mostly only realized at low growth temperatures (from

vapor or solution) and very small crystals, so-called crystallites or nanocrystals, dur-

ing and immediately after their nucleation. First let us have a view on the effect of

temperature. Representative Wulff plots and crystal shapes for the simple-cubic lat-

tice-gas model are shown in Fig. 4.6. Starting at T = 0 the equilibrium shape consists

still of flat faces being more or less smooth and so are the steps on them. With increas-

ing temperature, however, the thermal fluctuations become important and the steps

become more and more rough. Heavy dots on the 2D crystal shapes in Fig. 4.6 mark

the singularities where the flat faces meet the smoothly curved regions. At first the

corner edges (111) (having the highest free surface energy of simple cubic structure)

Fig. 4.5: Orthogonal (a) and polar diagrams (b and c) of surface energy of a simple cubic crystal

considering first (b, c) and second nearest neighbor interactions (d) (the portrait of A.A. Chernov is
reproduced from J. of Lawrence Livermore National Laboratory with its permission under the license CC BY-NC-SA
4.0; with permission of Springer Nature (a–d)).
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are rounded and their flatness disappears entirely at TR1. Thereafter the (110) edges

are vanished at TR2. These moments are characterized by tending the step Gibbs free

energy to zero. Finally, the crystal shape is everywhere smoothly curved and spheri-

cal symmetry is adapted as T ≈ Tc the critical temperature meaning that the whole

crystal surface consists entirely of rough character, even as T approaches melting

temperature Tm. However, Tc must not yet coincide with the melting temperature but

may be quite lower (more details will be given in the lecture part II on growth kinet-

ics). Some corresponding images of various near-equilibrium microcrystals with di-

mensions not more than 100 µm are added in Fig. 4.6. All of them were grown from

vapor or solution at temperatures 0 < T < TR, TR1, TR2, and Tc, respectively. On the right

side, a modeled simple-cubic crystal at corner viewed from the {111} direction is

added (in the used Ising model the temperature is quasi-quantified in the form of fluc-

tuation size). It shows clearly the T-oscillation-driven rounding effect of the (111) and

(110) edges due to the introduced step disorganization.

With increasing crystal size the free surface energy becomes more and more inef-

fective and many further environment factors, such as adsorptions, solvents, surfac-

tants, impurities, surface reconstructions, dislocations, stacking faults and twins, devi-

Fig. 4.6: Edge rounding due to effect of temperature roughening (with permission of Elsevier, Springer
Nature, and via open accesses by MDPI (TiO2)).
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ation from stoichiometry, degree of supersaturation or supercooling, crystallization

velocity, morphological instabilities, and even the structural state of the fluid phase

(degree of association) affect its value. Best practical studies of the equilibrium crystal

shapes are possible at high-purity vapor growth by sublimation-condensation in

closed ampoules or solution growth under ultraclean conditions. Also in the case of

epitaxial processes at the stage of 3D island growth the impact of process parameters

on the size ratio of the equilibrium faces proves to be well observable. Figure 4.7

shows habit variations of selected crystallites during early growth stage from vapor

and solution as a function of various parameters that affect it. Figure 4.7a presents an

image of a needle-shaped KDP (KH2PO4) mesocrystal grown from aqueous solution

the {100} side faces of which are retarded, obviously due to an affecting surfactant.

Such effect takes place when ethanol is added into the water, for example. Whereas

the four pyramidal {110} faces are terminated with a layer of K+ ions only, the {100}

faces are terminated with both K+ and H2PO4
− ions. Then, the growth suppression of

{100} faces for added ethanol is due to the formation of strong saturating hydrogen

bonds between the hydroxyl groups of the alcohols and the H2PO4
− ions reducing the

free surface energy.

Fig. 4.7: Habit variations at growth from vapor and solution depending on various affecting parameters

(courtesy (a) and with permission of De Gruyter (b)).
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Already in 1976 Stroitjeljev pointed to the variety of polyhedral habits of typical semi-

conductor crystal structures as a function of the degree of association, supersatura-

tion, and impureness of the starting fluid phase (vapor and solution) as well as on the

imperfectness, such as dislocations and twins, of the growing crystal. The mesocrystal

habits then observed and sketched still remain useful today (see Fig. 4.7b). With in-

creasing supersaturation (from left to right) both the twinning probability and den-

drite formation are increasing. As a result the formation of plate-like morphologies is

typical. Nowadays, these early studies help understand and control the habits of nano-

crystals. All nanomaterials share a common feature of large surface-to-volume ratio,

making their surfaces the dominant player in many physical and chemical processes.

This also applies to the nucleation and growth process of epitaxial layers on heteroge-

neous or structured substrates. For instance, at the growth of GaN on patterned sap-

phire substrates the facet evolution of the growing crystallites before their coales-

cence is more and more studied by consideration of kinetic Wulff plots under

different temperatures, vapor composition ratios, undoped and doped conditions. For

that the γ(θ,φ) function of the usual Wulff plot (see above) is substituted by a semi-

empirical kinetic function v(θ,φ) with v the analyzed growth velocity of the appeared

planes. As a result, a methodology can be developed to apply the experimentally de-

termined v-plots to the interpretation and design of evolution dynamics in nucleation

and island coalescence.

4.4 Selected effects of surface energy on crystal

growth processes

4.4.1 Growth angle at crystal pulling from the melt

The surface energy plays a decisional role at bulk crystal growth methods, especially

when free pulling from the melt is used, like at Czochralski (CZ), TSSG, floating zone

(FZ), edge-defined film-fad growth (EFG), Stepanov, and micro-pulling down (µ-PD).

Due to the absence of contact between the growing crystal and any crucible the solidi-

fication occurs on a liquid meniscus the shape of which is controlled by surface ten-

sion-driven capillary forces. As is observed, there is a strong relationship between the

shape of the meniscus cross section and the growing crystal form as well as the menis-

cus stability and crystal diameter constancy.

Considering the capillary conditions at the solid–liquid interface during pulling

processes from the melt an important dynamic parameter to be controlled is the me-

niscus height hm along the crystal pulling axis z. This value is obtained by integrating

the Laplace equation
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where γLV is the interface tension between the liquid (meniscus) and vapor (surround-

ing gas), r1 and r2 the principal two radii of curvature of the meniscus, z the vertical

coordinate, ρl the melt density, and g the gravitational acceleration. Unfortunately,

the mathematical description of the meniscus shape by eq. (4.19) is a second-order dif-

ferential equation, which cannot be integrated analytically. Several analytical approx-

imations have been reported in the literature. One of the widely used meniscus rela-

tions for the Czochralski case was given by Boucher and Jones in 1980 as

hm = a
1− sinφ0

1+ a=r
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(4:20)

where a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γSL=ρlg
q

is the capillary constant with γsl the solid–liquid interfacial ten-

sion, r the crystal radius, and φ0 the so-called growth angle between the meniscus slope

and the vertical (i.e., the crystal mantle) at z = hm. To obtain a uniform crystal cross sec-

tion with r = const, a stable given meniscus height hm must be obtained (a small correc-

tion of the denominator was given by Johansen in 1994). Looking at the Czochralski

sketch on the left side above in Fig. 4.8 at first sight one might suppose that φ0 should

be zero as a requirement for pulling of crystals with constant diameter because then

the meniscus turns into the vertical at the solid–liquid interface. However, there is a

crystal–liquid–vapor triple contour the equilibrium of which at the melting point is de-

termined by the interaction of the three interface energies γSL, γSV, and γLV as magnified

in the center of Fig. 4.8. This equilibrium forces the growth angle φ0 between crystal

mantle and meniscus tangent to be almost somewhat greater than zero. Thus, φ0 is a

characteristic thermodynamic parameter of each material in contact with its melt

under a given surrounding atmosphere (vacuum or inert gas).

The exact determination of φ0 at the distinguished planes {hkl} of each crystal is

complicated and, thus, often not correctly replaced by the wetting angle θSL because of

the assumption of complete wetting of a crystal face with its own pure melt, so that the

growth angle is erroneously taken as φ0 = 0. However, this would mean that the diame-

ter of most crystal substances increases continuously during the whole pulling process.

Actually, there are only few materials showing complete melt wetting and, thus, a zero

growth angle, like Cu, LiNbO3, LiTaO3, and ice, for example. However, most materials

do not wet their own melt completely and exhibit a growth angle φ0 > 0. Selected values

are compiled in the table in Fig. 4.8. A phenomenological approach to this value by con-

sidering the interactions between the three participating interface energies at the crys-

tal-melt-vapor contour, assuming that at any point of the triple line (meniscus-interface

periphery) Σγij = 0, was given by Voronkov (1963) as
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Table 4.1 shows γSL, γSV, and γLV values of selected crystal materials by taking into

account the crystallographic orientation (Miller indices).

To come back for a moment to the effect of the capillary constant a, it determines

the maximum height of a free liquid zone hmax
z between two solid bodies as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γSL=ρlg
p

.

This is of significance for crucible-free floating zone (FZ) processes whereupon the al-

lowed zone height is decisional determined by the given γsl value. For instance, whereas

at silicon hmax
z reaches 1.7 cm, in the case of GaAs it yields 8 mm only.

4.4.2 Faceting and ridge formation at melt growth

The mainly used melt-growth techniques are producing crystals of cylindrical shape.

Thus, also the adjacent melt at the solid–liquid interface shows a round cross section.

In fact, this should mean that also the peripheral contact line between the three

phases, solid, liquid, and vapor, or rather the solid container wall (triple phase line) is

circular. However, this proves to be only true from the macroscopic perspective. Mes-

Fig. 4.8: The equilibrium growth angle φ0 occurs at the crystal–liquid–vapor triple contour of melt growth

methods with meniscus formation determined by the interaction of the three interface energies γSL, γSV,

and γLV (with permission of Elsevier (table)).
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oscopically, in the vicinity of the triple-phase line the lateral crystalline surface can

vary from a circular one due to the possible presence of facets formed by most closely

packed atomic smooth (singular) crystal faces (see Section 4.3). This is the case when

the normal of a singular face forms a favorable angle to the pulling axis and the re-

lated facet slope coincides with the peripheral curvature of the melt–solid interface,

as sketched in Fig. 4.9 (left above). For example, at growth of crystals with diamond

and zincblende structure in <001> direction there are four {111} faces crossing the

four radial <110> directions showing an angle of 54.7° with the growth axis. As a re-

sult, at the triple-phase line four {111} facets are formed inclined towards the hori-

zontal (melt surface) by an angle of 35.3°. This occurs because singular faces must

draw back from the melting point isotherm into the colder region in order to be-

come a higher undercooling for generation of the necessary rate of two-dimensional

nucleation (around 3–5 K for dislocation-free {111} facets at high purity silicon). In

comparison, on nonfacetted (atomically rough) surfaces, atoms can be added singly

without the need for nucleation (let us assume that in Fig. 4.9 the main crystalline

surface is of such configuration). The situation is similar for numerous other materi-

als even when the crystal structure differs from cubic system. For instance, LiNbO3

of trigonal crystal system shows the main singular faces (00.1) and {10.2}. As a result,

at Czochralski growth along the usually used [12.0] direction three {10.2} facets ap-

pear on the triple-phase line angled in 65.12° (2×) and 32.75° (1×) to the melt surface.

Thus, before starting a crystal pulling experiment it is recommended to sketch the

surface equilibrium polyeder of the given substance in relation to the pulling axis in

order to determine the slope of the singular faces toward the melt surface and their

Tab. 4.1: Interface energies γSL, γSV, and γLV of selected crystalline materials in (J/m2) by

considering the crystal face orientation (with permission of Wiley, Elsevier, and Springer
Nature).

Material γSL (hkl) γSV (hkl) γLV

Cu . () . .
Ag . () . () .
Si . () . () .
Ge . () . () .
GaAs . () . ()

. ()

.

CdTe . () . ()

. ()

.

LiNbO . () . .

Note that the values are averaged from theoretical and experimental literature data.

Fizitcheskaja Khimija Poverkhnostnykh Javlenij v Rasplavakh (Nauka Dumka, Kiev 1971);

S. Adachi, Properties of Group –IV, III-V and II-VI Semiconductors (J. Wiley, 2005);

Th. Duffar in: Handbook of Crystal Growth Vol. IIB (Elsevier 2015) p. 757; G. Guisbiers,

G. Abudukelimu, J. Nanopart Res. 15 (2013) 1431; R. Shetty et al., J. Crystal Growth 100

(1990) 51 and 58; P. Reiche et al., J. Crystal Growth 108 (1991) 759.
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possible appearance as facets on the triple line (as it is sketched in the figure left

above).

Figure 4.9 left shows the magnified sketch of meniscus dynamics along a facet.

The melt–solid interface is assumed as an even plane growing with constant velocity

v. A facet with a certain angle of inclination is added at the periphery. As a first ap-

proximation its lateral extension is proportional to its required growth undercooling

ΔT differing from that of the rest of interface. At the early stage of facet generation

the meniscus is stable attached to it by the constant equilibrium growth angle φ0.

However, with increasing facet length the meniscus onto it is more and more raised

by an exceeding meniscus height hexcm and, thus, the contact angle φ is reduced in com-

parison with φ0. Now, it is often the case, that even before the nucleation on the facet

starts, the meniscus jumps back from the nonequilibrium situation φ < φ0 to the stable

one φ = φ0. As a result, the facet area becomes exposed. In the course of the pulling

process the rhythmic rising and sliding down of the meniscus forces a trace of ridge-

like protrusions arranged in vertical seams along the crystal surface as shown by

some exemplary crystal images 1–4 in Fig. 4.9.

Fig. 4.9: Ridges formation at atomically smooth facets caused by the interplay between nonequilibrium

meniscus angle φ and equilibrium growth angle φ0 illustrated by surface images of selected crystals as-

grown from the melt (public domain of Wikipedia (2) and with permission of Elsevier (3)).
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From a practical point of view the genesis of ridges is of ambivalent appearance.

One unfavorable feature proves to be the probability of spontaneous nucleation when

the quasi-undercooled facet is overflowed by the melt during crystal rotation. This

can happen at Czochralski growth with rotation, particularly, in the stage of shoulder

growth. Furthermore, the back reflection of heat at the mirroring facet can provoke

temperature inhomogeneities along the meniscus periphery, often resulting in spi-

rally growing crystal shapes. Many studies have been carried out to find out the best

experimental conditions for minimization of the facet area and related ridges sizes.

One measure is the increase of the local temperature gradient by proper modeling-

based heat zone engineering. Recently some patents were published claiming an azi-

muthally alternating insulation between growth container and heater well-adjusted

to the facet positions at VB and VGF growth of semiconductor compounds. On the

other hand, the presence of ridges is a visual evidence for crystal perfectness as far as

this is in situ observable. For instance, at CZ or FZ methods both the correct number

and arrangement of the facets along the propagating melt–solid interface indicate the

single crystalline growth.

Faceting becomes increasingly problematic the stronger the binding force and an-

isotropy of the given crystal structure. Particularly, this mostly occurs with the CZ

growth of substances with ionic bonds, such as oxides. Often the morphology of such

crystals is not able to follow the cylindrical shape but split the mantel into numerous

adjacent facets. Such crystal habit is named “idiomorphic”. Figure 4.10 presents the im-

ages of some oxide crystals of idiomorphic forms. Typically for the strengths of ionic

bonds and distinct anisotropic crystal lattice there is the distinct tendency to expose

their most closely packed planes with lowest free surface energy, like in the case of me-

lilite-type borate Bi2ZnB2O7, bismuth silicon oxide Bi12SiO20, and langasite La3Ga5SiO14

(a–c) with high nonlinear optical, photorefractive, or piezoelectric quality, respectively.

The image of a Czochralski-grown Bi2Te3 crystal is added (d). This semiconductor is

characterized by its high thermoelectric efficiency. However the pulling of cylindrical

crystals from the melt proves to be almost impossible due to the trigonal lattice system

with pronounced layered character. Perpendicular to the c-axis a quintuple layering

with only very weak binding forces between the layers takes place. Hence, at the pull-

ing and even simultaneous rotation of such crystals perpendicularly to the c-axis always

oval cross sections (Fig. 4.10) or ribbon-like crystal shapes are obtained. In the last case,

the bordering surfaces are two opposing flat mirror-like c-facets being equivalent to the

easy cleavable basal plane with lowest surface free energy. On the other hand, attempts

to grow along the c-axis always fail by a self-reorientation into directions markedly tilt-

ing from c. Therefore, it became clear that such crystals can be better grown by hori-

zontal or vertical Bridgman techniques.

Finally, the crystallization from solutions or vapor phase is almost free of any

shape constraint. As a result the crystal habitus most likely approaches the equilib-

rium one. Usually, the polyhedral shapes are limited by planes of low free surface en-

ergies as it is presented by selected solution-grown crystals in Fig. 4.10e-g (note, the

4.4 Selected effects of surface energy on crystal growth processes 111



shown diamond crystal was grown by using high-purity Fe–Co alloy as the solvent

with added Ti and Cu to get nitrogen and minimize the formation of TiC, respectively).

Of course, as it was already mentioned in Section 4.3, with increasing crystal size the

free surface energy becomes increasingly ineffective and many environment factors

are affecting its value. In solutions the degree of purity and the presence of additives

(mineralizers) can influence the crystal shape, as was already demonstrated by the

formation of needle-like KDP crystals when ethanol was added to the aqueous solu-

tion demonstrated in Fig. 4.8.

4.4.3 Surface energetic effects at epitaxy

In advanced epitaxial processes, the state of the surface plays an eminent role. Al-

ready before the deposition is started the structural feature, purity, and preparation

quality of the substrate are decisional factors. First its reconstruction, responsible for

minimization of the free surface energy, may influence the nucleation and initial

layer growth modes onto it. Then, very thin films thereon possess the de facto sub-

strate surface features as a whole. On heterogeneous (misfitting) substrates strained

Fig. 4.10: Facet appearance on various crystals grown from melt and solution (Creative Commons
Attribution License (a); with permission of IKZ Berlin (b), Elsevier (c,e,f), IOP (d) and Lawrence Livermore National
Laboratory (g)).
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layer situations and atomic ordering effects may take place within the first few mono-

layers of multicomponent depositing materials. As a result the physical properties of

the thin films are modified relative to those of the bulk state. Finally, the universal

force of minimization of the interfacial energy can lead to self-assembling (self-

organizing) arrangements of the nucleated islands into periodic nanopatterns.

4.4.3.1 Surface reconstruction

The phenomenon of surface reconstruction refers to the process by which atoms at

the surface of a crystal form a different structure than that of the bulk. The free dan-

gling bonds of atoms on the surface are rearranged in order to assume a minimum

surface energy. Because of such atom movements the symmetry of the surface

changes with respect to the bulk leading to a 2D equilibrium surface structure.

Thereby, the atomic distances along the surface become periodically differing and,

usually, also the neighboring underlying planes are somewhat affected by strains.

Such frequent changes in surface symmetry can be easily detected by surface diffrac-

tion techniques such as low-energy electron diffraction (LEED) and reflection high-

energy electron diffraction (RHEED) as well as by scanning tunneling micros-

copy (STM).

In the case of many semiconductors, the simple reconstructions can be explained

in terms of a “surface healing” process in which the coordinative unsaturation of the

surface atoms is reduced by bond formation between adjacent atoms. Figure 4.11 dem-

onstrates exemplarily the surface reconstruction at the crystal–vacuum interface of Si

(100) and GaN (0001). First, we look at the case of silicon (a,b). The formation of an

unconstructed Si (100) (1×1) surface leaves two “dangling bonds” per surface Si atom.

Now, the relatively small coordinated movement of the surface atoms can reduce this

unsatisfied coordination by coming together of Si atom pairs to form surface Si dimers,

leaving only one dangling bond per Si atom. This process leads to a change in the sur-

face periodicity whereupon the period of the surface structure is doubled in one <110>

direction giving rise to the (2×1) reconstruction. The two related STM images below il-

lustrate the difference between unconstructed (1×1) and reconstructed (2×1) surface

states on atomistic scale. Dimer rows along the [110] direction are formed in the course

of reconstruction (b). The (100) surface of materials with zinc blende structure behaves

almost identically. For instance, an As-terminated GaAs surface forms As-dimers that

reduce also the number of dangling bonds and, thus, the free surface energy.

The next example in Fig. 4.11c and d shows the relatively seldom but interesting

(4×4) reconstruction of the Ga-terminated (0001) surface of GaN having wurtzite struc-

ture (d). During the MBE process it was observed that a rhombus consisting of eight

Ga atoms is formed via the (2×2) intermediate state at 500 °C. The related STM images

show that at (2×2) reconstruction each rhombus side overlay four (1×1) unit surface

cells from non-reconstructed case (c).
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The surface reconstruction is often given in terms of Wood’s notation from 1964,

wherein the surface crystallography is described by (hkl)(m × n)Rφ with hkl the Miller’s

indices in the bulk, m,n the periodicity of the translation vectors of the 2D surface (s)

unit cell as = nab and b
s =mb

b related to the vectors in the bulk (b), and Rφ the azi-

muthal rotation angle of the surface unit cell relative to the underlying bulk unit cell.

When the simplest 2D unit cell reconstruction without central atom takes place, thus,

consisting only of one “repeat unit,” the character p standing for “primitive” is preceded

as p(m × n). It is common practice to omit p and pronounce such structures simply as

“m by n”. On the other hand, when the surface structure differs in that there is an addi-

tional atom in the middle/center of the adsorbate unit cell then this is no longer a primi-

tive structure and c standing for “centered” is presented as c(m × n). For instance, a

typical reconstructed structure at epitaxial processes on (001) surface of diamond and

zinc blende structure proves to be c(4 × 4). Finally, in case of compounds the A or B

surface cell termination can be expressed by (m × n)α or (m × n)β, respectively.

In this notation, the surface unit cell is given as multiples of the non-reconstructed

surface unit cell. For example, the typical calcite (104) (2 × 1) reconstruction means that

the unit surface cell is twice as long in direction a
s = 2 a

b and has the same length in

direction b
s = bb. In Fig. 4.11 these denotations are also added for both demonstrated ex-

Fig. 4.11: Top and side view sketches and STM images of ideal and reconstructed Si (100) and GaN (0001)

surfaces (STM images: with permission of Yokohama City Univ (a), free reuse under license CC BY 3.0 (b), with
permission of Springer Nature (c) and Elsevier (d)).

114 4 Surfaces, phase boundaries, and interfacial effects



amples of (001) (2 × 1) Si and (0001) (4×4) GaN, respectively. If the unit cell is rotated with

respect to the unit cell of the non-reconstructed surface, the factor Rφ is added in degree.

For instance, the structure of the Au (001) surface is an interesting example of how a

cubic structure can be reconstructed into a distorted hexagonal phase. This hexagonal

phase is often referred to as a (28 × 5) structure, distorted and rotated by Rφ ≈ 0.81° rela-

tive to the [011] crystal direction. However, this rotation disappears at T = 970 K, above

which an unrotated hexagonal structure is observed. Furthermore, at T > 1170 K an in-

stantaneously disordered (1×1) structure of square symmetry is recovered.

In general, compound surfaces can develop many different reconstruction patterns

depending on the substrate temperature, pressure, pre-transport parameters (vapor as-

sociation, flux rate, and density) and activities of the constituting atoms along the sur-

face. For instance, under dimer and tetramer antimony flux the surface reconstruction

of a GaSb (001) substrate is changing with increasing temperature from (2×5) towards

(1×3). Further, at a pressure (flux) ratio pAs4:pGa around 10 the reconstruction periodicity

of a GaAs (001) surface translates above 400 °C from (2×3) through (2×1) and (2×4) to

(3×1). Such reconstructions are generally equilibrium structures and are presented in

Fig. 4.12: Reconstruction equilibrium structures in the form of p-T surface phase diagram for (001) GaAs

performed in a MBE apparatus equipped with a RHEED system and movable ion gauge for beam equivalent

pressure (BEP) measurements. Top and side drafts of some reconstructions are added (unit cells are marked

in red) (with permission of Elsevier (diagram) and IOP (top and side sketches)).
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the form of surface phase diagrams as demonstrated for (001) GaAs in Fig. 4.12. The in-

vestigations were performed in a MBE apparatus equipped with a RHEED system and

movable ion gauge for beam equivalent pressure (BEP) measurements. As arsen source

As4 was used. It shows the presence of various reconstruction types as a function of

temperature T and BEP equivalent ratio between As4 and Ga. Degradation of the sur-

face morphology was observed at T > 800 °C and BEP ratio < 0.8 by Ga droplet and facet

formations, respectively. It has to be mentioned that although not all crystal (substrate)

surfaces do reconstruct this phenomenon is extremely frequent and needs to be consid-

ered in thin-film depositions very carefully.

At first glance, it’s not simple to understand why the reconstruction should re-

duce the surface free energy, more because the atomic rearrangement entails some

strain due to certain elastic deformation (increase) of the surface area. Origin of sur-

face stress could be understood by the nature of electron density distribution. Due to

the decreased number of nearest neighbors of the surface atoms compared with bulk

atoms the local electron density around the atoms near the surface is reduced. As a

response the surface atoms are forced to reduce their interatomic distance in order to

increase surrounding charge density accompanied by a surface stress, which can be

both positive (tensile) or negative (compressive). For instance, semiconductor surfaces

forming dimers (see Fig. 4.11b) is the way for it to respond to the tensile stress. If the

surface is not clean but comprises several foreign atoms the charge density would

then be modified leading to a different surface stress state compared with a perfect

clean surface.

Surface stress, first defined in 1878 by Gibbs, can be written in simple scalar nota-

tion as

σs
= γ+

∂γ

∂ε
(4:22)

with γ the surface-specific free energy and ε the strain. Now it can be easily ex-

plained why σ and γ are equal in liquid–gas or liquid–liquid interfaces in which the

term ∂γ/∂ε always equals zero due to the shear nonresistance of γL. This is so be-

cause if the surface of a liquid is expanded, matter from the bulk rapidly reconsti-

tutes the environment of surface atoms and γL remains unchanged. However, ∂γ/∂ε

is not zero in solid surfaces due do the fact that surface atomic structure of solid are

modified in elastic deformation. Thus, the derivative ∂γ/∂ε represents the thermody-

namic force on surface atoms to change their location. It’s the driving force for recon-

struction corresponding to the amount of energy gained by structure transformation

over the surface stress. Therefore, reconstruction of an ideal surface termination will

occur only if the change in ∂γ/∂ε is large enough to compensate the energy increase

due to the energetically unfavorable atom replacement (precisely it has to be noted

that differently from the surface free energy γ, which is a scalar, surface stress and

strain are second rank tensors σs
ij and εij, respectively. Then, the first term on the

right-hand side of eq. (4.22) must by multiplied by the Kronecker symbol δij)
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Usually, a perfect reconstruction feature implies a clean surface in ultrahigh vac-

uum. In contrast, the adsorption of species onto the surface may enhance, alter, or

even reverse the process. The presence of so-called adsorbates can modify the surface

structure and, thus, the unit cell periodicity. Epitaxial processes, especially the forma-

tion of the first nucleation layer and generally the growth kinetics (see lecture part II)

of very thin films may be essentially influenced by the reconstruction mode at the

used substrate surface. First, the surface diffusion rate and corresponding parameters,

like the incorporation diffusion lifetime, can be changed markedly. Further, rapid dif-

fusion that occurs along specific directions of reconstruction enhances the formation

of anisotropically shaped islands. Finally, the deposition temperature can be essen-

tially influenced. Thus, in addition to the highest possible preparation quality and pu-

rity of an “epi-ready” substrate surface it is imperative to know precisely the epitaxy

parameters for control or minimization of the impact of surface reconstruction.

4.4.3.2 Ordering effects in mixed semiconductor thin films

Due to the importance for engineering of new material combinations with extraordi-

nary properties even by epitaxial processes the phenomenon of nonrandom arrange-

ment of binary and ternary alloys, closely correlated with surface reconstruction and

reviewed by one of the pioneers Zunger 1997, will be presented in Figs. 4.13 and 4.14.

Almost all semiconductor devices are based on successive grown thin films made of

alternating binary or/and ternary mixed semiconductor alloys A1–xBx (e.g., Ge1–xSix)

or/and A1–xBxC (e.g., Ga1–xInxAs, Ga1–xInxP) the electronic properties of which are tai-

lored by varying the composition. In addition, the use of very thin alloys allows the

production of special structures such as quantum wells with abrupt changes in

bandgap energy. Due to the microscopic scale of the thickness of these layers the ener-

getic surface and interface states become dominant for atom arrangement within the

film “bulk.” Through the interplay with the effect of surface reconstruction (see Sec-

tion 4.4.3.1) during epitaxial growth the topmost and few subsurface layers may rear-

range in a structure of atomistic ordering of the alloy components. Therefore, an inter-

facial effect is taking place. First the discovery of this phenomenon was surprising

because for many years it was believed that when two isovalent semiconductors are

mixed, they will form a solid solution at high temperature or separated phases at low

temperature, but they will never produce ordered atomic arrangements. It was as-

sumed that the mixing enthalpy of an alloy Δhm(x) depends on its global composition

x only and not on the microscopic arrangement of atoms. However, careful thermody-

namic analysis has shown that certain ordered three-dimensional atomic rearrange-

ments within the top layers minimize the strain energy resulting from the lattice-

constant mismatch between the constituents, while random arrangements do not. In

particular, there are special ordered structures α that have lower energies than the

random alloy of the same composition x, that is
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Δhorderedα < Δhm xð Þrandom (4:23)

where in case of a binary mixed system stands

Δhα
ordered

=Eα
ordered

− x EA − 1− xð Þ EB (4:24)

and

Δhm xð Þrandom =E xð Þrandom − x EA − 1− xð Þ EB (4:25)

with Eα
ordered the total energy of a given arrangement α of A and B atoms on a lattice

with N sites, EA and EB the total energies of the constituent solids, and x = NB/N the

mole fraction. Thus, ordered and disordered configurations at the same composition x

can have a different excess enthalpy Δh(x)exc leading to a thermodynamically stable

rearrangement in the subsurface layers in contrast to the thermodynamically stable

arrangement in an infinite bulk solid.

In addition to CuAu and chalcopyrite basis forms the most frequently observed

ordering type for III–V mixed alloys grown epitaxially on (001) oriented substrates is

the rhombohedral CuPt structure (Fig. 4.13b), with ordering on one or two of the set of

four {111} planes. It occurs when the cation planes take an alternate sequence of A-

Fig. 4.13: Model of an epitaxial A1–xBxC (Ga0.5In0.5 P) film (a) microstructural ordered by CuPt type (b)

proved by transmission electron diffraction analysis (c) (with permission of MRS (a) and Springer Nature (c)).
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rich and B-rich planes following AxB1 −xC (Fig. 4.13a). The result is usually a superlat-

tice-like structure along 1�11
� �

or �111
� �

called (111) B plane, or along �1�1�1
� �

or 11�1
� �

called

(111) A plane, respectively. The two ordering directions are therefore called CuPt-type

A and B ordering due to the similarity with CuPt crystal structure. In its turn the CuPt

structure is stable only for the surface reconstruction that forms [110] rows of �110
� �

group-V dimers on the (001) surface. Figure 4.13a shows the lowest energy configura-

tion of an epitaxial (001) film of Ga0.5In0.5P on a (001) GaAs substrate illustrating the

relation between surface reconstruction, surface segregation, and subsurface order-

ing. When the reconstruction is (2 × 4)β an indium segregation and CuPt-B ordering

alternating {111} planes of Ga and In exist. CuPt-B ordering implies that the small cati-

ons Ga move under the P dimers (A and B sites) to relax the local compression but the

large cations In between dimer rows (C and D sites) to compensate the local tensile

stress. Thus, such stress-reducing atomic rearrangement into a new CuPt symmetry of

GaP-InP clustering within few subsurfaces below a reconstructed surface minimizes

the total energy more effectively than random mixing leading to the thermodynamic

phenomenon in eq. (4.23).

Such ordering effects are well detectable by transmission electron diffraction

(TED). In GaxIn1–xP thin films grown without off-orientation on (001) GaAs substrates

additional small superlattice spots appear along the [110] zone axis at h ± 1
2
, k ± 1

2
, and

l ± 1
2
where h, k, l are the fundamental zinc blende reflections (Fig. 4.13c).

Fig. 4.14: Formation of CuPt-type ordered region at heteroepitaxial CdTe/ZnTe film interface obtained by

MOCVD on GaAs substrate (a) proved by TED (b) and HTEM (c) (with permission of Elsevier (b, c)).
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The thermodynamically driven effect of microstructural ordering has been also ob-

served in ternary II–VI thin films such as Hg1–xCdxTe and ZnSe1–xTex. It became appar-

ent that such phenomenon of substructuring takes place not only in films of ternary

mixed systems but can be obtained at heterointerfaces between two binary compounds

caused by intermixing of constituent elements too. For instance, CuPt-type ordered (Cd,

Zn)Te structures were found at the interface region between CdTe and ZnTe films

grown by MOVPE on (001) GaAs substrate at 400 °C. Figure 4.14 shows the scheme of a

CdTe/ZnTe/GaAs double-layer structure (a), TED pattern of the interface region through

[110] projection with extra spots typically for CuPt-type ordering (b), and a cross-

sectional high-resolution TEM image of the interface region showing doubling periodic-

ity in contrast of {111} lattice planes (c). In the TED image A and B represent the possible

two superstructure orientations along �111
� �

and 1�11
� �

directions, respectively. Their

equal probability is obvious from Fig. 4.14c showing electron diffraction doubling in pe-

riodicity of �111
� �

and 1�11
� �

lattice fringes. Such interfacial effect needs the intermixing

of group II elements and rearrangements of atoms by relative high diffusivity being typ-

ically for II-VIs. Then an ordering effective sublattice relaxation takes place that reduces

the biaxial compressive stress due to the large lattice misfit and the marked difference

of thermal expansion coefficients between CdTe and ZnTe. In the end, the excess en-

thalpy is more effectively reduced than in the case of a disordered atomic arrangement.

Ordering effects have important practical consequences. An interesting order-

induced property of thin film alloys is the reduction of the bandgap energy compared

to that of bulk alloys of the same composition, thus, moving the wavelength further

into the infrared. Hence, ordered III–V structures may become useful for IR detectors.

But, for that, the materials engineer must be able to control ordering over the entire

surface of a wafer in order to replace the spontaneous ordering by a precisely con-

trolled one. Two control measures are the epitaxy temperature and the partial pres-

sure ratio of the constituents within the gas phase. The degree of ordering is possible

to determine by in situ surface photoabsorption (SPA), indicating the nature of chemi-

cal bonding at the surface.

Recently, it was discovered that the use of surfactants may markedly enhance the

control of ordering too. Surfactants are elements that accumulate at the surface dur-

ing growth. For example, the use of isoelectronic group V elements, for example Sb,

allows to control the surface structure and, hence, the degree of order and bandgap

energy of Ga1–xInxP. Surface photo absorption data indicate that the effect is due to a

change in the surface reconstruction, i.e. in the displacement of some surface P

dimers by larger Sb dimers.

4.4.3.3 Surface patterning by self-assembling

One of the most investigated phenomena during the last decades is the “self-

organized” surface texturing on nanoscale, occurring at the epitaxy of a mixed crystal

system onto a substrate with markedly differing lattice parameter. The specific inter-
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est is directed on the observed formation of periodically arranged nanospots acting as

quantum dots. Such patterns offer interesting prospects for the development of new

electronic and optoelectronic devices. In particular, if the size, shape, and positioning

of those structures can be controlled, they become very attractive for photonic appli-

cations such as affecting electromagnetic wave propagation or tunable single-photon

light sources. Well known is Si1–xGex as a prototypical system of self-organization of

nanostructures during heteroepitaxy. Despite the 4.18% lattice mismatch between Si

and Ge, it is possible to grow Si1–xGex pseudomorphically on Si. Such a depositing

layer can undergo a transition from planar two-dimensional growth at small thick-

ness to a three-dimensional island structure at higher coverage. The development of a

three-dimensional morphology proves to be an alternative to the generation of misfit

dislocations as a means to minimize the energy of the heterosystem. This phenome-

non is sketched in Fig. 4.15 on the left side.

The origin of self-organized surface patterning is caused by the interplay of inter-

face thermodynamics and growth kinetics (part II of lecture). In this context, an epi-

taxial system of dissimilar materials can minimize the energy by evolving specific

growth morphology such as the Stranski–Krastanov mode (see Section 5.2.2), where-

upon, initially a two-dimensional layer-by-layer growth is proceeded to wet the sur-

Fig. 4.15: Sketch and SEM of a heteroepitaxial LPE Si0.9Ge0.1 layer on (001) Si substrate showing the

self-organization of a waved film surface, followed by island patterning due to balancing between elastic

strain in the film and increase of surface energy (with permission of Elsevier (equation) and IOP Publ. (images)).
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face (Fig. 4.15, left above) but then, as the surface free energy is decisional acting, a tran-

sition to three-dimensional morphology takes place. For a mixed crystal film on a hetero-

geneous substrate under compressive stress, undulation of the surface allows lattice

planes to relax toward ripple peaks (Fig. 4.15, left below). This lowers the elastic energy

stored in the film, but increases the surface energy as compared to a planar surface. The

balance between the reduced stress and increased surface energy defines a critical mini-

mum wavelength λc for stable cycloid surface undulations under plane strain conditions.

This critical distance was derived by Chiu and Gao (1993) based on elastic solutions for a

two-dimensional cycloid surface as

λc =
1− νð Þπγ

2μ 1+ νð Þ2ε2
(4:26)

where ν is the Poisson’s ratio of the film material, γ the surface-specific free energy, µ

the shear modulus, and ε = (as – af)/af the misfit-induced biaxial strain with as and af

the lattice constant of substrate (s) and film (f), respectively (see also Fig. 4.15, left

above). Surface undulations with wavelength larger than λc can stable form via sur-

face diffusion to minimize the system energy (Fig. 4.15, left below). Conversely, for

wavelengths smaller than λc, it is energetically favorable to reduce the surface energy

by filling the troughs so that smoothening is expected. In the case of a Si1–x Gex film

on a silicon substrate, the Ge atoms will migrate at the crest of the undulations, where

the lattice constant is closer to that of bulk unstrained Si1–xGex material. Setting re-

lated values for x = 0.5 in eq. (4.26) yields λc of the order of 100 nm.

Already in 1989, Srolovitz estimated the change of energy at lateral stressing in

going from a flat to a simplified square-waved surface profile, with wavelength λ and

amplitude c. Using this consideration in a first approximation for a sine-like waved

film surface (Fig. 4.15, left), the resultant “gain” of surface related energy part is

roughly,

ΔGs =
−σ2

2E

cλ

2
+ 2γ (4:27)

with σ = Eε the interfacial stress, and E the Young’s modulus [all another terms are

specified under eq. (4.26)]. Finally, the wave amplitudes are formed as separate pyra-

mids. Equation (4.27) shows that the formation of a “rough” surface profile lowers the

energy of the system, provided that the wavelength λ > 8γE/σ 2. In this way, such a pro-

cess of “self-assembling” is related to a stress-induced morphological instability (sur-

face undulation), which tends to roughen the film surface and develop cusp-like stress

singularities so that the strain energy stored in the film can be effectively released.

Thus, again the surface-specific free energy turns out to be crucial. The right side of

Fig. 4.15 shows characteristic SEM images of Si0.9Ge0.1 pyramidal islands, which are
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grown up from a undulated film surface according to the Stranski-Krastanov mode by

applying LPE. The final stage of the pyramids is bounded by {111} facets of minimum

free surface energy.

Meanwhile, this process has been studied at vapor and liquid phase epitaxy (ALE,

MBE, MOCVD, and LPE) of numerous III–V and II–VI single components, compounds,

and mixed alloys. Even arrays of self-assembled nanowires have been successfully ob-

tained, especially when atomically stepped (“vicinal”) substrate surfaces are used. Fig-

ure 4.16 shows AFM images of Si1–xGex and Ge nanopyramids on (001) Si substrates

grown by LPE without substrate structuring (a) and by MBE on textured substrates,

so-called templates (b). As can be seen from Fig. 4.16a, the size and density of the

nanodots can be controlled by the mole fraction x. The higher the related lattice mis-

fit, i.e., the higher the Ge content, the smaller the size and density of the pyramids.

Figure 4.16b shows the results of a seminal technique to obtain well-ordered

nanocrystal arrangements. Patterns of Ge islands were grown at quasi highest lattice

misfit on (001) Si substrates with lithographically defined two-dimensionally periodic

pits. It was observed that the growth rate of the islands on patterned substrates is in

general larger than that on flat substrates under identical deposition parameters due

to the fact that Ge atoms deposited at the sidewalls of the pits can migrate downwards

Fig. 4.16: AFM images of Si1–xGex and Ge pyramidal nano-dots grown by LPE on (001) Si substrates without

substrate structuring (a) and by MBE on textured substrates (b) in dependence on lattice misfit and number

of monolayers, respectively (with permission of Elsevier (b)).
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to the bottom of each island. Further, the island formation on the patterned substrates

occurs at an earlier stage than on flat substrates. That means a smaller number of

initiating Ge monolayers (MLs) is required for the transition from 2D to 3D growth.

TEM investigations revealed that the grown nanocrystals are free of dislocations. Fur-

thermore, the elastic interaction among the islands is also significantly reduced due

to their smaller number density in a regular 2D arrangement.
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5 Deviation from equilibrium

5.1 Driving force of crystallization

The precondition for crystallization of a stable solid phase within a metastable fluid

phase is the deviation from the thermodynamic equilibrium. Therefore, to form a crys-

tal, the nutrient (starting, mother) phase (melt, gas, solution or solid) must be in a

metastable state (in the following we discuss mainly fluid–solid (F-S) phase transi-

tions, although the principles are applicable to the rarer used solid–solid transitions

too; see Section 5.2.4). Thus, the Gibbs free energy of a fluid starting phase must ex-

ceed that of the crystalline one. Equating the partial or molar Gibbs free potential gi of

each involved phase i to the related chemical potential µi [see eq. (3.11)] the difference

of chemical potentials at given temperatureT and pressure p is

μF − μS = Δμ (5:1)

referred to as driving force of crystallization or growth affinity. This holds true not

only for the cases of nucleation of a solid phase within a fluid one but also for the

propagating fluid–solid interface of each crystallizing bulk or thin-film system. In the

following the relations between chemical potential difference and the experimentally

used measures for this driving force will be given.

Figure 5.1 demonstrates the required nonequilibrium situation ahead of the crystal-

lization front at crystal growth from melt, solution, and vapor (the sketched examples

represent uniaxial crystallization by HB, growth by aqueous solution, and thin-film de-

position by MBE, respectively). From the related scheme of a µi(T ) phase projection it

follows that a certain difference between the equilibrium temperature Te (e.g., melting

point Tm) and the actual temperature at the fluid–solid interface T = Tg (growth tempera-

ture) is required to induce the incorporation of building blocks (atoms, molecules) into

the crystalline phase (note, in case of an exact thermodynamic equilibrium the absorp-

tion transfer of atoms from fluid to solid would to be identical with their back desorp-

tion from solid to fluid and therefore no any progressing crystallization could take

place). For the case of melt growth the difference Te – T represents the degree of under-

cooling (supercooling) ΔT = Tm − T acting as related driving force for crystallization. The

direct proportionality between ΔT and difference of chemical potentials Δµ, derived in

Spec box 5.1, yields for the liquid–solid (L → S) phase transition

ΔμL!S = Δh ΔT=Tmð Þ (5:2)

Quite an identical situation exists at growth from solution and vapor (see Fig. 5.1).

However, according the thermodynamic parameter specifics instead of the tempera-

ture difference the driving forces are expressed by the differences between the actual

and equilibrium concentration ΔC and pressure Δp, respectively [of course, also at

these growth methods the temperature remains a decisional operative parameter by
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applying the actual C(T ) and p(T ) functional dependencies]. That means, the actual

concentration C or pressure p of the nutrient fluid phase around the growing crystal

must be higher than the equilibrium values pe and Ce. This difference is designated by

the supersaturation. Its convenient expressions are

Total supersaturation Δp= p− pe ΔC = C − Ce (5:3)

Relative supersaturation Δp=pe = S − 1ð Þ= σ ΔC=Ce = S − 1ð Þ= σ (5:4)

Partial supersaturation p=pe = S C=Ce = S (5:5)

Percentage Δp=pe · 100 %ð Þ ΔC=Ce · 100 %ð Þ (5:6)

Clearly, S < 1, S > 1, and S = 1 stand for undersaturated, supersaturated, and saturated

vapor or solution, respectively.

As with the melt growth, also the driving forces for crystallization from vapor and

solution are quantified by the experimental parameters p and C (see also Spec box 5.1).

Fig. 5.1: Schemes and comparison of driving force of crystallization at crystal growth processes from the

melt, solution, and vapor (for simplification the supercoolings ΔT are sketched equal in all growth

principles, which, of course, in reality vary depending on the phase transition).
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ΔμV!S = kT ln 1+ Δp=peð Þ (5:7)

ΔμSol!S = kT ln 1+ ΔC=Ceð Þ (5:8)

where k is the Boltzmann constant and T the given growth temperature. By using eq.

(5.4) for relatively small supersaturations, we get Δμ=kT = ln S= ln 1+ σð Þ≈ σ � 1.

Spec box 5.1: Driving forces of crystallization

i) Melt–solid transition:

From the comparison of the µi(T ) curves in Fig. 5.1, it follows that a stable solid phase requires a

difference of the partial chemical potentials between liquid (L) and solid (S) as Δμ= μL − μS .The

equilibration in molar notation of the Gibbs free energy (see Section 3.2) is

Δμ=Δg=Δh− TΔs (B5:1‐1)

where T < Tm is the actual temperature at the liquid–solid interface, Tm the melting temperature,

and Δh, Δs the specific enthalpy and entropy of crystallization, respectively. Inserting the relation

Δh=Δs Tm from eq. (2.9) gives the driving force of crystallization as

ΔμL!S =Δh− T Δh=Tmð Þ= Δh=Tmð Þ Tm − Tð Þ=Δh ΔT=Tmð Þ (B5:1‐2)

ii) Vapor–solid transition [see Markov (2020)]:
Now the µi(p) curves are relevant. Thus, a stable solid phase does exist when the actual pressure

p is higher than the equilibrium pressure pe, i.e., p > pe. That means the difference of the chemical

potential is

Δμ= μV pð Þ− μS pð Þ (B5:1‐3)

and more exactly

Δμ= μV pð Þ− μV peð Þ½ �− μS pð Þ− μS peð Þ½ � (B5:1‐4)

where μV peð Þ= μS peð Þ are the partial chemical potentials at the equilibrium. For small deviations

from equilibrium eq. (B5.1-4) can be explicitly written as

Δμ=

ðp

pe

∂μV
∂p

∂p−
ðp

pe

∂μS
∂p

∂p=
ðp

pe

vV − vSð Þ∂p ffi
ðp

pe

vVdp (B5:1‐5)

with the molar partial derivative ð∂μ=∂pÞ= ð∂g=∂pÞ= v = VV=NA (molar volume). Assuming that

the gas is an ideal one vV = kT=pð Þ after integration of eq. (B5.1-5) and setting p− pe =Δp, one
obtains the intensified equation (5.7)

ΔμV!S = kT ln p=peð Þ= kT ln 1+Δp=peð Þ (B5:1‐6)

iii) Solution–solid transition:

As was already mentioned under eq. (5.8) for a rough approximation the adequate equation (B5.1-6)

can be used to express the driving force for solution growth when the solution is treated as an

ideal one. After replacing C by the mole fraction x, it becomes

ΔμSol!S = kT ln x=xeð Þ= kT ln 1+Δx=xeð Þ (B5:1‐7)

Note that solution growth Δµ is often expressed in eq. (B5.1-2) in terms of supercooling ΔT of the
solution down to the supersaturation x from the equilibrium temperature Te at xe. For this the
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value ΔhL→S must be replaced by the enthalpy of solution ΔhSol→S, derived in the Spec box 2.2.
However, there is no significant difference in the latent heat of melting.

In the predominant cases of real solutions the activity ai must be introduced as it was detailed in

Section 3.2.3. Replacing eq. (B5.1-7) by introducing a = x γ (with γ the activity coefficient) we get

ΔμSol!S = kT ln a=aeð Þ (B5:1‐8)

ΔμSol!S = kT ln x=xeð Þ+ kT ln γ=γe
� �

(B5:1‐9)

Using the interaction parameter Ω for a symmetric solution model from eq. (3.42), whereupon

kT lnγ=Ω 1− xð Þ2 at small supersaturation ln ð1+Δx=xeÞ≈Δx=xe becomes

ΔμSol!S ≈ kT Δx=xe +Ω 1− xð Þ2=Ωe 1− xeð Þ2
h i

(B5:1‐10)

Sure, for crystallization from solution a favorable solvent B should be found for which the interac-

tion parameter with the matrix A is Ω > 1 in order to obtain a quasi solvent-free crystal [see eq.

(3.48)]. Very likely, it can be assumed that Ω/Ωe differs not so much from unity and the driving

force can be calculated based on the ratio of two concentrations x and xe. However, in more detail

this ratio includes the influence of the solvent on the component interaction and growth kinetics

under supersaturated and equilibrium conditions, a situation where the driving force needs to be

accurately accounted, it being not a trivial research program. Since Ω/Ωe > 1 the driving force is

slightly enhanced at the growth from solution. Even the process of desolvation before the matrix

atoms are incorporated into the growing crystal spends certain activation energy in addition to

the supersaturation (see lecture part II).

It is noted that in eqs. (5.7) and (5.8) the product kT is used, which is commonly ap-

plied as scale factor for energy in molecular-scale systems. The hitherto used product

RT = kT NA is responsible in macroscopic scale, for example, in phenomenological

thermodynamic systems. Then the value Δµ is not more intensified and should be,

strictly speaking, replaced by ΔG [see eq. (3.11)]. However, to prevent collision with

the notation for the system Gibbs energy we will furthermore apply Δµ for the exten-

sive designation of the driving force as is customary in literature too.

The insertion of characteristic growth parameters into eqs. (5.2), (5.7), and (5.8) re-

veals an approximate comparison between the acting driving forces at the growth from

melt, solution, or vapor shown in Fig. 5.1 (of course, the homogeneous nucleation of a

new solid phase within a metastable fluid phase without involvement of an artificial

seed requires a much larger supercooling and supersaturation than an already pre-

sented seed or substrate crystal). According to eq. (5.2) at melt growth the ratio Δh/Tm
usually falls within the range of 10–150 J/K mol, and values of ΔT are typically 0.1–1 K.

Hence, ΔµL→S becomes not more than about 100 J/mol [note, the undercooling depends

sensitively on the atomic nature (roughness or smoothness; see lecture II on kinetics) of

the growing interface and can reach at the atomically flat {111} face of dislocation-free

silicon crystals ΔT ≈ 3–5 K; then after eq. (5.2) with Δh/Tm (Si) ≈ 30 J/K/mol the value of

ΔµL→S is 150–200 J/mol that is markedly larger than for defective crystals]. To compare

the driving forces of solution and vapor growth with those of melt growth we replace in

eqs. (5.7) and (5.8) kT by RT as sketched in Figs. 5.1 and 5.2. Setting in eq. (5.7) Δp/pe ≤ 100
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the value of ΔµV→S reaches some 1000 J/mol that is around one magnitude of order

higher than at melt growth. At solution growth typical values of the relative supersatura-

tion of aqueous solutions ΔC/Ce are ≤0.1. After eq. (5.8) ΔµSol→S becomes around 500 J/mol

in the middle between vapor and melt growth. In fact, such a value was found for per-

fect NaCl crystal growth from aqueous solution. This is also true for the growth from

melt–solution like at LPE. Taking an epitaxy temperature of 1000 K and a relative super-

saturation of 0.05 the driving force of crystallization becomes ~ 400 J/mol. Thus, the gen-

eralized rank order is

ΔμL!S < ΔμSol!S < ΔμV!S (5:9)

Usually, the values of Te, Ce, and pe are given by the phase diagrams, which describe

equilibria involving pure, unstrained single crystals. However, to describe the growth

of strained crystals, such as at heteroepitaxy where the lattice misfit can develop an

enormous stress (see Section 4.4.5.2 and lecture part II), terms involving elastic strain

energy must be added. Similarly, any deviation from the phase diagram conditions

(e.g., the application of hydrostatic pressure, electric or magnetic fields) requires

minor modifications of the expressions for Δµ too.

It is also important to note that the quasi-conformity of eq. (5.8) with eq. (5.7),

where the concentration C replaces the pressure p, proves to be a simplification

(being, however, quite applicable for experimental estimations). Strictly speaking, in

case of solution growth at least two active components are presented, namely the sol-

ute (matrix to be crystallized) A and the solvent B. Thus, it is advisable to replace the

concentration C by the mole fraction x, more when intensified thermodynamic pa-

rameters are applied, as was introduced in Section 3.2.1. Then, the activity as interac-

Fig. 5.2: Comparison of driving force at different epitaxy methods.
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tion parameter between the components in each phase ai = γi xi (see Section 3.2.1) has

to be considered (unfortunately, as it was shown in Section 3.2.3, the finding of the

real value of ai proves to be not an easy task for numerous solution growth systems).

The detailed derivations of the driving forces for the three treated phase transitions

under consideration with the activity at solution growth are given in the Spec box 5.1.

Figure 5.2 compares the approximated relative supersaturation σ = Δp=pe = ΔC=Ce
and driving force Δµ for different epitaxy techniques, e.g., LPE, VPE, MOCVD, and

MBE. Due to the much higher variability of the vapor pressure selection at growth

from the gas phase compared to crystallization from melt–solution the Δµ-curve is

markedly more spread at MBE and MOCVD than at LPE. Whereas MBE and MOCVD

are characterized by the largest driving forces the LPE method proceeds closest to the

thermodynamic equilibrium requiring lowest driving force. This is a quite certain

consequence for the nucleation processes (see Sections 5.2–5.3) and crystal growth ki-

netics (lecture part II). As will be seen in the following chapter, for the stage of nucle-

ation of a solid phase within a fluid nutrient without any assisting seed or substrate,

largest diving force is required.

5.2 Nucleation

Figure 5.3 shows sketched snapshots of the dynamic process of new phase formation

in the fluid phase (vapor, melt, or solution). In a metastable fluid phase of not yet suf-

ficient deviation from equilibrium (case a) still random approaches of atoms and mol-

ecules and most decay of undercritical clusters are taking place. In other words, close

to equilibrium the probability of sufficiently large fluctuations leading to a stable new

phase is infinitesimal. This is attributed to the large barrier to phase transition arising

from the energy cost for creating an interface between the new and original phase.

Only after the driving force Δµ is enhanced by increase of the deviation from equilib-

rium (i.e., Te – T = ΔT, p – pe = Δp, C – Ce = ΔC at melt, vapor, and solution growth, re-

spectively) a new stable phase can form (case b). In case of a first-order phase transi-

tion this new phase starts with small complexes of atoms or molecules (nuclei) having

a large surface-volume ratio at the beginning. With increasing number of nuclei and

their growth the driving force of the system (supercooling, supersaturation) decreases

and approaches the phase equilibrium. However, the barrier is ab initio markedly re-

duced when instead of such mode of homogeneous nucleation a seed or substrate is

brought in contact with the metastable fluid phase (case c). Then the nucleation and

subsequent crystal growth are supported and controlled very effectively. This is the

sense of single crystal and thin-film growth. But now let us examine them successively.

Gibbs (1878) and Thomson (1888) developed the functional dependence between the

size (radius) of the nucleus and difference of the chemical potentials between the start-

ing and nucleating phase [see Section 4.2, eq. (4.10)]. Assuming the simplest case of tran-

sition from a supersaturated vapor to a condensed liquid droplet they found that an
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enormous driving force ΔµV→L is required to overcome the surface energy effect hinder-

ing the outgrowth of nuclei that are too small. It raises the question of how is it even

possible that stable nuclei are formed when their highly convex shape tends to dissolve

into the ambient mother phase rather than continue to growth? Already in 1878 Gibbs

took into consideration that repeated density fluctuations in the starting phase could be

responsible for the formation of stable nuclei. But this pioneering idea has proved to be

insufficient because big nuclei would require unrealistic large fluctuations. The inconsis-

tency was adjusted by the classical thermodynamic nucleation theory of Volmer and

Weber in 1926 according to which the main prerequisite for the occurrence of a nucle-

ation process is a sufficiently high supersaturation (supercooling), when even small fluc-

tuations are adequate for the appearance of growth-capable nuclei. In total, very close

to equilibrium the probability of sufficiently large fluctuations leading to a stable new

phase is infinitesimal. On the other hand, for the occurrence of a nucleation process the

establishment of a sufficiently high driving force Δµ is required when only small fluctua-

tions are necessary for critical nuclei formation.

In 1922, it was Volmer who introduced the adsorption of growth units onto the crys-

tal surface, their diffusion along the surface, and the generation of two-dimensional nu-

clei. This was the birth of the quasi-heterogeneous nucleation characterized by a re-

duced driving force due to the energetic benefit of wetting. Later this led to technical

Fig. 5.3: Metastable fluid phases and stable new phase by homogeneous and seed-assisted nucleation

(with permission of Elsevier).
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implementations in bulk growth with artificial seeding and epitaxial processes on cer-

tain substrates, sketched in Fig. 5.3 c.

Figure 5.4 summarizes examples of nucleation modes currently applied in the

bulk crystal growth production. A quasi-homogeneous nucleation regime is used at

industrial crystallization for production of suspensions comprising of small crystalli-

tes such as sugar, table salt, fertilizers, pharmaceutical pills, etc. (Fig. 5.4, left). By

pushing a homogeneous multicomponent solution away from thermodynamic equilib-

rium the driving force creates the plurality of overcritical crystalline nuclei, which

after filtration and drying are exposed to the desired particulate product of uniform

size. Technically, this process is highly automated and proceeds in giant tanks (crystal-

lizers). Until today, industrial crystallization has to develop into a wide specific re-

search and production branch. For more details there is an extensive related collec-

tion of textbooks and publications.

Another mode is the directional solidification of products with multicrystalline struc-

ture, such as cast iron parts, for example. The crystallization starts by multiple hetero-

geneous nucleation on the cooling bottom of a mold or melt container. As a result,

many grains of divergently crystallographic orientations are formed. Depending on the

demands the subsequent process is controlled in such a way that the grain size is either

kept constant or increasing with the crystallizing ingot height (note even at the begin-

ning of the coalescence the effect of Ostwald ripening (1897) is involved supporting the

Fig. 5.4: Principles of industrially applied nucleation modes (images are public domains of Wikipedia).
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thermodynamic self-selection of size; see Section 5.2.2). One of the most widely used in-

dustrial applications today is the directional solidification of multicrystalline silicon in-

gots, serving for mass production of wafers for solar cells (in the middle of Fig. 5.4). A

favorable grain enlargement can be obtained by a convex shape of the crystallization

front or positioning of seed panels on the container bottom.

The nucleation barrier is markedly reduced and a single crystalline structure is

favored if a crystallization-inducing seed crystal is provided (Fig. 5.4, right). Such a

mode is widely applied at the bulk growth of single crystals, e.g., by Czochralski, Kyr-

opolos, VB, VGF, FZ, THM techniques.

In the case of diverse epitaxial processes a matching substrate that fits both the lat-

tice parameter and coefficient of thermal expansion of the layer to be grown would be

the best prerequisite for monocrystalline film depositions. However, in many cases

finding such a substrate proves to be difficult or even impossible. Therefore, often the

substrate surface must be suitably designed before it is used as base. For instance, this

can be achieved by deposition of successively graded buffer layers or artificial surface

structuring in order to reduce the lattice misfit or the contact area, respectively.

5.2.1 Homogeneous nucleation

Generally, when providing basic knowledge about the homogeneous nucleation

within a native supersaturated (supercooled) phase we should consider the following:

it’s a spontaneous process generating simultaneously numerous nuclei most of which

show uncontrolled divergent crystallographic orientations and, thus, coalesce into a

polycrystalline solid structure with many large-angle grain boundaries. Of course,

such a feature contradicts the desired monocrystallinity for most devices in electron-

ics, optics, etc. Therefore, these applications require perfect bulk crystals growing pre-

dominantly from a single monocrystalline seed. Such step of controlled crystallization

requires, above all, the basic knowledge of heterogeneous nucleation shown in Sec-

tion 5.2.2. Nevertheless, the starting point must be the general principles of homoge-

neous phase formation, all the more because it is important for mass crystallization

and increasingly for the production of nanocrystals.

Until today, the essence of the thermodynamic treatment remains the classical

nucleation theory (CNT) presented in Section 5.2.1.1 whereupon a microsphere with a

critical size forms through fluctuation of atomic configuration, chemical composition,

and temperature in the supersaturated (undercooled) liquid. In the CNT, however, the

equilibrium crystalline phase is nucleated randomly in a homogeneous completely

disordered fluid. This would be immediately transferable to the gas phase. In contrast,

recent studies of structural properties of liquids revealed that the supercooled liquid

state is no longer homogeneous as assumed by CNT. Thus, crystallization begins with

the enhancement of crystal-like bond orientation order followed by translational

(density) ordering. In other words, the solid state prefers to nucleate from preordered

5.2 Nucleation 133



regions with local orientation symmetry consistent with the crystal. It is obvious that

even in the melt of materials with high degree of association due to their marked

ionic fraction in the bond energy, such preordering is preferred. Some aspects of the

related non-classical pathway will be given in Section 5.2.1.2.

5.2.1.1 Classical approach

Let us take the simplified case of formation of a spherical nucleus within a metastable

nutrient starting phase comparable with the situation introduced by Gibbs in 1876,

where a liquid droplet is nucleated within a homogeneous vapor (actually, it has been

observed at crystal growth from vapor that initially intermediate liquid nuclei can be

formed before they are translated into the solid phase due to the overlapping of the

vapor–liquid and liquid–solid metastability regions near the triple point named Ost-

wald’s step rule; see below).

The energetic situation is sketched in Fig. 5.5 (left). Concerning the phenomeno-

logical thermodynamic treatment we have it to do with two opposite acting forces,

namely, (i) the generation of the new stable volume within the metastable starting

phase reducing the system enthalpy by energy gain, and (ii) the creation of the associ-

ated interface area that consumes energy and, thus, increases the free energy. Sure,

even in the moment of generation of very small nuclei the surface share exceeds the

volume part considerably. The classical theory of homogenous nucleation provides

answers to the question of which nucleus size class belongs to which deviation from

equilibrium (supersaturation) and which critical nucleus size is large enough to over-

come the barrier (ii) by fluctuation. This is the cardinal point, which equally applies

to all modes of phase transition and nucleus shapes.

Therefore, the process of homogeneous nucleation starts spontaneously within the

metastable phase after the system attained a sufficient large driving force (supersatura-

tion and supercooling) to overcome the energy-consuming effect of interface formation

and to promote the phase equilibrium by outgrowth of nuclei. Due to this competition

just-formed nuclei of undercritical size can again disappear. Only nuclei of overcritical

size are able to outgrow and contribute to the obtainment of the phase equilibration.

Between them an instable situation does exist comparable with the mechanical analog

of a ball on a hill. This is inserted in Fig. 5.5 (left) and shows that only a very small push

exerted on the ball causes it to roll down, either to the right (which corresponds to

growth) or to the left (which corresponds to decay). Even the statistical fluctuations

come into play, here. There is always a certain probability that a given number of

neighboring atoms or molecules acquire sufficient energy necessary for the formation

of stable nucleus.

Assuming the formation of a droplet in the vapor phase, the change of extensive

free energy of the system at creation of spherical nuclei is

ΔG= −ΔGV + ΔGIF (5:10)
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where –ΔGV associates with the energy gain to form and increase the volume of the

stable phase being therefore preceded by a minus sign, and +ΔGIF stands for the ex-

penditure of energy (plus sign) required for creation and increase of the interface be-

tween nucleus and nutrient phase. After insertion of the related parameters for the

volume and surface, the energy change is

ΔG= −
4πr3

3
Δμ=ΩV + 4πr2γ (5:11)

where r is the nucleus radius, ΩV the specific volume of the building blocks (atoms, mol-

ecules), Δµ the driving force (here the difference between the chemical potentials of the

vapor and liquid), and γ the free interface energy. Figure 5.5 left shows the summarized

ΔG(r) function of eq. (5.11) in red consisting of the volume and surface term for a given

supersaturation Δµ. Its maximum at ΔG✶ determines the radius of the critical nucleus

r✶, which is calculated by the derivation of eq. (5.11) and setting ∂DG=∂r= 0 as

∂ΔG

∂r
= −

4πr2

ΩV
Δμ+ 8πrγ= 0 (5:12)

Fig. 5.5: Overview of the general formulas of free energy change versus nucleus radius and related

graphical functions of homogeneous nucleation (the portrait of M. Volmer is public domain).
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so that the critical nucleus radius is

r✶ =
2γΩV

Δμ
(5:13)

Inserting eq. (5.13) into eq. (5.11) gives the maximum in total free energy change, also

named work of nucleation

ΔG✶
=
16π

3

γ3Ω2
V

Δμ2
(5:14)

which is reached at the critical nucleus size. The physical meaning is that the nucleus

can grow only if its actual radius exceeds the critical one (r > r✶) because only then it

decreases the total free system energy. On the other hand, at r < r✶ the nucleus is un-

stable and dissociates. Note that the “shape factor” 16π/3 in eq. (5.14) belongs to a

spherical nucleus. In comparison, crystalline nuclei show polyhedral habits with a

somewhat enlarged shape factor of about two (see Spec box 5.2).

Substituting the supersaturation Δµ in eq. (5.14) by the potential difference of the

Gibbs–Thomson equation (4.10) for a critical radius obtains

ΔG✶
=
1

3
4πr✶2γ (5:15)

which means that the Gibbs free energy required to form a critical nucleus is equal to

one-third of the interface-related energy term in eq. (5.11). This relation is projected in

the ΔG(r) plane within the 3D picture in Fig. 5.5 right, in which solid spherical nuclei

within a liquid phase are assumed. In the same projection space it is also demonstrated

how the free energy is changed with undercooling when the driving force is expressed

in eq. (5.2) as Δμ= ΔhðΔT=TmÞ= ΔsΔT , where Δs is the change of entropy of fusion. It is

obvious that the maxima ΔG✶ of the ΔG(ΔT ) curves are reducing with increasing under-

cooling and move toward smaller critical nucleus diameter (Fig. 5.5, right).

In case of homogeneous nucleation of a droplet within a vapor, the driving force is

determined by the supersaturation. Depending on the vapor element, its consistence,

and temperature, the relative supersaturation S= p=pe is in the range of 2 to 6. For in-

stance, a critical water droplet nucleating within a watery vapor at T = 275 K needs a

value of S ≈ 4. Using eq. (5.7) the extensive driving force ΔμV!L = kT ln S is ≈ 4.8 × 10−21 J

and the intensive RT lnS ≈ 3 kJ/mol. Then, the critical radius is estimated according to

eq. (5.13) after insertion of ΔμV!L ≈ 4.8× 10−21J, γ≈ 75× 10−7J=cm2
, and ΩV =m=ðNAρÞ=

ΩV =m=ðNAρÞ= 18 g=mol= 6.023× 1023mol−1 × 1 g=cm3
� �

≈ 3× 10−23cm3 with m and ρ

being the molar mass and density of water, respectively. Thus, at partial supersatu-

ration of S = 4 the critical radius of a water droplet within a vapor becomes

r✶ ≈ 0.9× 10−7cm≈ 1 nm. That means, the volume of the critical water droplet (4/3 π r✶3)

consist of about n✶ ≈ 130 water molecules and the maximum of free energy change
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[eq. (5.15)] yields ΔG✶ ≈ 7× 10−19 J. Sure, with decreasing supersaturation the critical

droplet radius increases.

Much theoretical estimation by the classical nucleation theory has been done for a

long time. However, realistic experimental verification were absent until recently. One

of the fascinating experiments was performed by Zhang and Liu in 2004. They observed

homogenous nucleation processes during assembling of 2D colloidal monolayers by con-

trolling an alternating electric field (AEF). As AEF-driven nucleating substance they used

polystyrene spheres with diameter 0.99 nm pending in deionized water. Selected images

1–4 are shown in Fig. 5.6. The revealed statistics of decay and growth of subcritical clus-

ters and critical nuclei follow the theory quite well. As can be seen, the nuclei have to be

of a critical size before they become thermodynamically stable (yellow circle). In com-

parison, subcritical nuclei do usually dissolve (red circle). Only seldom they grow by

chance. The middle n(t) curve shows that the nucleation characterized by successive ag-

glomeration of the sphere n starts from a nonstationary state and gradually approaches

a stationary state of critical number n✶ after an initiating time ti. Then the distribution

of nuclei is time-independent. Thus, the critical size of nuclei is definite only at a station-

ary state. The right curve shows the experimentally detected nucleation rate J standing

for the average number of newly formed supernuclei per unit time in a unit area. It

depends on the driving force (here supersaturation σ) very sensitively and is of expo-

nential character, which means that at too low driving force no nucleation can occur.

Fig. 5.6: Experimental verification of classical nucleation theory (with permission of Elsevier).
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Consequently we come to the conclusion that the nucleation process is of statistical

nature, which is characterized by possible decay and growth of the presented nuclei

with critical size. Therefore, the rate of growth-capable nuclei correlates with the

probability to achieve sufficient fluctuation energy. For this reason, in 1926, Volmer

and Weber were the first who expressed the nucleation rate J by the Boltzmann factor

J = J0 exp
−Δg✶

kT

� �

(5:16)

which is the number of nuclei per unit time (s) with J0 the pre-exponential factor,

which later was determined by applying the kinetic principle of a nucleation process

running as a series of reaction of collision and afterward absorption or desorption of

atoms or molecules.

To express the nucleus size by its number of atoms or molecules we can apply

volume of nucleus

volume per atom
=

volume of nucleus

volume of unit cell=number of atoms per unit cell
(5:17)

The probability of finding a critical nucleus consisting of a critical number of atoms

or molecules n✶i by adding eq. (5.14) is

n✶i = ni exp
−ΔG✶

kT

� �

= ni exp −
16π

3kT

γ3Ω2
V

Δμ2

� �

(5:18)

where ni is the number of single atoms or molecules when the system is in equilib-

rium. After Becker and Döring in 1935 determined the kinetic nature of the pre-factor,

the stationary nucleation rate by adding eq. (5.17) for homogeneous nucleation is

J = Z υ+✶n✶i = Z υ+✶ni exp
−ΔG✶

kT

� �

≡
2D

λ2
exp

−ΔG✶

kT

� �

(5:19)

with Z being the Zeldovich factor Z = Zn✶=Cn✶ − Zn✶+1=Cn✶+1 where Zn✶ is the steady-

state cluster size distribution with Cn✶ the equilibrium concentration of n-sized clus-

ters, and υ+✶ the probability of attachment of an atom or molecule at the critical nu-

cleus replaceable by the rate j+ at which atoms or molecules attach to the nucleus per

unit time with same transition probability in each direction. Then the hopping rate is

given by Z j+, which can be expressed in terms of the mean free path λ and the mean

free time τ as Z j+= 1=τ = 2D=λ2. Consequently, a relation of Z j+ in terms of the diffu-

sion coefficient D is obtained. In order to consider the temperature dependence the

value of D can specified by the Einstein-Stokes relation for a spherical case as D=
kT
6πηλ

where η is the dynamic viscosity of liquid at given T. For more details the reader is

referred to the extensive literature.

Mostly, the experimental investigation of maximum supersaturation or supercool-

ing proves to be hampered by the presence of foreign particles (impurities), which

reduces the driving force of homogeneous nucleation by heterogeneous reactions (see
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Section 5.2). First Turnbull in 1950 concluded that if a liquid is subdivided into very

small droplets, most droplets would not contain nucleation-assisting particles and the

nucleation should occur in the bulk of the liquid. He succeeded by a first experiment

with high-purity mercury and observed that the small droplets could undercool to

about 0.8 Tm. Sometime later he summarized identical experiments with diverse met-

als and found a good accordance whereupon maximum supercooling yields around

20% of the melting temperature in all cases. In Tab. 5.1 Turnbull’s and some newer

results are tabulated. As can be seen, even highly purified water undercools until the

homogeneous nucleation by almost ~18% (425 K).

Spec box 5.2: The critical solid nucleus of polyhedral shape

At phase transitions from vapor, solution, or melt into a crystalline solid nuclei with polyhedral habit

are formed. After Nanev (2015) at a homogeneous nucleation of melt–solid transition, eq. (5.10) is modi-

fied by the shape of the nucleus volume Vcr and anisotropy of the interface energy as

ΔG= −
Vcr
Ω

Δμ+
X

γhklAhkl = −nΔμ+
X

γhklAhkl (B5:2‐1)

Tab. 5.1: Degree of maximum supercooling of small droplets of various materials (with permission of AIP
Publ., Elsevier and Springer Nature; the portrait of D. Turnbull is from the free encyclopedia of Wikipedia).
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where n= Vcr=Ω is the number of atoms ore molecules in the nucleus, γhkl and Ahkl the interface energy
and surface area of each polyhedron faces specified by the Miller indices hkl, as was introduced in eq.

(4.15). For instance, when a solid nucleus shows a simple cube shape with {100} faces of edge lengths

L the change of free energy according eq. (B5.2-1) is

ΔG= −
L3

Ω
Δμ+ 6L2γhkl (B5:2‐2)

Due to the uniformity of γf100g = γ, the derivative ∂ΔG=∂L= 0 gives the edge length of a critical cube-

shaped nucleus to be

L✶ =
4Ωγ

Δμ
(B5:2‐3)

with the potential barrier of nucleation, which is calculated by insertion of L✶ into (B5.2-2) as

ΔG✶ = 32
γ
3Ω2

Δμ2
(B5:2‐4)

Comparing eqs. (B5.2-4) with eq. (5.14) the shape factor is 16π/3 and 32 for a sphere and cube, respec-

tively. With other words, when the interface energy is the same for sphere and cube the barrier of

nucleation for a cube is about two times more than for a sphere.

Defining the critical nucleus size by the number of atoms or molecules in it n= Vcr=Ω the shape of

both volumes have to be considered. Taking the simplest model of a cubic primitive crystal lattice con-

sisting of tiny building units of volume Ω = a3 with edge length a, the total surface area A of a nucleus

of such a shape with edge length L= n1=3 is A= 6 a2 n1=3
� �2

= 6 a2 n2=3 and eq. (B5.2-2) yields

ΔG= −nΔμ+ γ 100f g6a
2n2=3 (B5:2‐5)

After ∂ΔG/∂n = 0 the critical number of building units in a cube-shaped critical nucleus is

n✶ = 64
γ
3Ω2

Δμ3
= 64

γ
3a6

Δμ3
(B5:2‐6)

Considering the melt–solid transition we express the driving force of crystallization by the degree of

supercooling from eq. (5.2)

Δμl!s =Δh ΔT=Tmð Þ (B5:2‐7)

where Δh is the heat of fusion and Tm the melting point. Therefore,

n✶ = 64
γ
3a6

Δh ΔT=Tð Þ½ �3
(B5:2‐8)

Taking the characteristic maximum of relative supercooling of metallic melts ΔT/Tm ≈ 0.2 and intensify-

ing the intensive heat of fusion by Δh=NA = 13 kJ=mol=6.023× 1023mol−1 = 2.16× 10−20J (polonium with

simple cubic structure) the driving force is ΔμL!S ≈ 4.3× 10−19J. At usual values for the interface energy

of metals γ≈ 15× 10−6J=cm2 and edge length a= 0.33× 10−7cm the critical number of atoms n✶

yields ~3483.

A likewise calculation for nuclei of cubic structure in high-purity silicon melt at the highest mea-

sured supercooling ΔT ≈ 300 K (see Fig. 5.8) gives the number of atoms in a related critical nucleus of

about 2000. In comparison, at a much smaller melt supercooling of ΔT ≈ 3 K the number of Si atoms in

the critical nuclei increases up to about 2 × 109.
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Today the experimental analysis of homogeneous supercooling is effectively provided

on contactless melt droplets positioned in facilities counteracting the gravity effect by

electrostatic or electromagnetic levitation. Both are demonstrated in Fig. 5.7. Whereas

the first method utilizes a laser to melt the sample, in the second one induction heating

is applied. In the absence of a crucible, levitated droplets can undergo considerable

undercooling, and the nucleation process is free from effects related to contact with re-

fractory walls. This permits investigation of many unique solidification phenomena

including degree of supercooling, speed of solidification front, phase selection, and mor-

phology. According the inserts between c and d in Fig. 5.7 the latent heat generated

upon solidification raises the temperature of the solidified phase, which is identified as

the light area S, while the dark area represents the liquid phase L.

Using the electromagnetic levitation method the functional dependence between growth

velocity and degree of undercooling were detected in silicon and Si–Ge melt droplets by

Panofen and Herlach in 2007. The experimental curve and its comparison with theoreti-

cal one is shown in Fig. 5.8a. Supercoolings as high as 300 K have been obtained at both

materials accompanied by extremely high growth velocities of more than 15 m/s.

adapted from: W. Hormfeck et al, arXiv:1410.2952 (2014) (a); 

D. Tourret et al., Acta Materialia 59 (2011) 4665 (b);

Lei Gao et al., Metallurg. Mat. Transact. B 47 (2016) 537 (c,d)
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Fig. 5.7: Supercooling analysis on levitating droplets (with permission from Arxis with CCBY4.0 license (a),
Elsevier (b), and Springer Nature (c, d)).
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Thus, the moment of nucleation can be markedly depressed by high cooling rates,

more when the growth rate of a given crystalline material is restrained due to the

kinetic resistance. That means, on the one hand the diffusivity of building blocks

(atoms and molecules) toward the still undercritical nuclei is decreasing with temper-

ature reduction due to the exponential increase of the melt viscosity; on the other

hand, the possible presence of atomically smooth solid–liquid interface retards the

attachment of new atomic layers (see lecture part II). In other words, the moment of

recovery of phase equilibrium by homogeneous nucleation will be further delayed

and, thus, the deviation from equilibrium is enlarged by increased undercooling. As a

result the growth rate of the relative nucleated solid phase increases too (Fig. 5.8a).

Finally, in certain systems the melt viscosity becomes rapidly so large with under-

cooling that the material transport toward the nuclei by diffusion is almost impossible

and the system drives more and more away from equilibrium. In the end, a phase

transition of first-order no longer takes place and a second-order transfer of glass for-

mation does occur. Glicksman (2011) combined both opposite processes in the follow-

ing viscosity-dependent growth velocity

Fig. 5.8: Correlation between solidification velocity versus supercooling of levitating Si and Si–Ge droplets (a)

and illustration of the influence of the increasing melt viscosity (b) (with permission of Elsevier (a) and Springer
Nature (b)).
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v=
Δh

6πηr

ξhkl
Λhkl

ΔT

Te
exp −

ΔEη

k ΔTð Þ

� �

(5:20)

where Δh is the enthalpy of fusion, η the dynamic viscosity, r the gyration radius of

the diffusing atoms/molecules, ξhkl a crystallographic factor varying slightly with the

interface growth direction, Λhkl a proportionality factor for the width of the solid–liquid

transition zone, ΔEη the activation energy of viscous flow, and Te the equilibrium tem-

perature to be equated with Tm the melting point of the given substance. The growth

rate dependence for attachment-limited crystal growth from a high-temperature vis-

cous silicate melt according eq. (5.20) is constructed in Fig. 5.8 b. As can be seen, initially

the interface speed (averaged from some glass data) is rising with melt supercooling,

like in a, but followed by a slowing down at ΔT > 200 K as the viscosity increases at an

exponential rate. Thus, when strong viscosity effects occur, a melt–glass transition with-

out nucleation and growth of solid phase is approaching.

In this context it is important to note that the classical driving force of the

melt–solid transition in eq. (5.2) ΔμL!S = Δh ΔT=Tmð Þ= ΔsΔT and its insertion into the

work of nucleation in eq. (5.14) is an approximation strictly valid for small and middle

supercoolings only. There are material systems for which at a critical large undercool-

ing temperature the viscosity has risen up to such a high value that the diffusion of the

atoms or molecules to a possible nucleation position is quasi-stopped. With furthermore

decreasing temperature the metastable state of the disordered melt structure is solidi-

fied without nucleation of the crystalline phase, which means that the driving force is

quasi-annulled. The end result of such transition is the glass formation characterized by

“freezing of the undercooled melt state”. After Kauzmann (1948) at this kind of transi-

tion the difference between entropy of the liquid and of the solid Δs = sl – ss becomes

equal to zero.

5.2.1.2 Nonclassical concept

As was shown in Section 5.2.1.1 according to the classical nucleation theory (CNT) the

crystal nuclei are born randomly and their growth rate is determined by the driving

force of crystallization Δµ at a fixed interface energy γ (eq. (5.18)). From the specifica-

tion of the pre-factor of the nucleation rate in eqs. (5.16) and (5.19), it became apparent

that the diffusion constant D and its dependence on the viscosity η of the fluid phase

play a decisive role. However, the classical theory ignores an ordered crystal-like pre-

orientation even in markedly supercooled fluids, but also, if there are strong bonding

relationships between the atoms or molecules. Furthermore, the basic assumptions of

CNT are questionable as they do not consider the microscopic nature of the transition.

One of the recognized sources of uncertainty is given by the assumption of the capil-

lary approximation considering the surface energy γ as a fixed value independent of

the nucleus size that refers to a flat interface. Although valid for critical clusters of

large size, it loses consistency for small clusters.
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Especially during the last few decades several studies have reported nonclassical

nucleation mechanisms characterized by the initial formation of pre-ordered regions

in the liquid that act as precursors of the crystallization and related polymorphic

structures. The clusters of the pre-structured liquid are regions of either increased

bond-orientational order or density that promotes the emergence of crystallites

within the center of the clusters by reducing the interfacial free energy. Thus, the ob-

servation, e.g., by HRTEM and X-ray scattering (see lecture part II), and numeric MD

modeling of preordered regions in supercooled melts has raised great interest in un-

derstanding the connection between structural and dynamical heterogeneity of the

liquids and crystallization mechanisms in a diverse range of metallic, semiconducting,

dielectric, and organic systems.

The nonclassical concept analyzes the nucleation mechanism via two steps: the

initial formation of preordered regions in the supercooled liquid and a subsequent

formation of the crystalline bulk phase within these regions. The increase in the

bond-orientational order within the preordered liquid region creates a precursor that

reduces the interfacial free energy by providing a diffuse interface between the liquid

and crystalline core of the growing nucleus, thus facilitating the formation of the bulk

phase. A key component in the analysis of the simulation turns out the identification

of the local structure around each atom typically defined on the basis of order param-

eters (OPs) – functions of the Cartesian coordinates that relate a numerical value to a

spatial configuration of an ensemble of atoms or molecules. An OP is typically zero

for a disordered phase while it assumes characteristic nonzero values for specific spa-

tial ordered arrangements. Recently, Mahata et al. (2022) analyzed by using the com-

mon neighbor analysis (CNA) via the Steinhardt OP1) the influence of liquid preorder-

ing on homogeneous nucleation of pure metals and compared the results with CNT.

The obtained critical nucleus sizes of Al and Mg within own high-supercooled melts

was markedly reduced up to ~50% compared to the classical pathways.

In a review paper, Vekilov (2010) shows the importance of consideration of the

preordering effect at the growth from solutions. The most significant finding is the

two-step mechanism of nucleation, according to which the crystalline nucleus appears

inside preexisting metastable clusters of size several hundred nanometers, which con-

sist of dense liquid and are suspended in the solution. While initially proposed for

protein crystal nucleation, the applicability of this mechanism has been demonstrated

for small molecule organic and inorganic materials, colloids, and biominerals too.

Again, for a more special insight into the theory, please refer to the extensive lit-

erature. Suffice it to point out here that we can no longer neglect the effect of a possi-

ble pre-orientation in the liquid. In the lecture part II we will come back to this phe-

 Steinhardt OP: a set of parameters based on spherical harmonics to explore the local atomic envi-

ronment. Such parameters are used to identify structures of solid and liquid atoms (see Steinhardt

et al., 1983).
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nomenon at the discussion of the kinetics of growing liquid–solid interfaces showing

often not a sharp boundary but a diffuse transition region consisting of few pre-

oriented atomic rows in the melt with features of the crystal structure to be grown.

5.2.2 Heterogeneous nucleation

For the growth of single crystalline bulk and thin-film materials the homogeneous nu-

cleation does not play an important role. On the contrary, it should be even avoided

in order to obtain monocrystalline structures without disoriented multinucleated

grains. Thus, for bulk crystal growth the use of an artificial seed is favored to start the

crystallization locally and reduce the driving force of crystallization by the presence

of a supporting fluid–solid interface. At epitaxial processes a substrate acts as quasi-

seeding surface area fitting the structure of the depositing layer as much as possible.

Although in these cases nucleation processes are furthermore of decisional role they

are now of heterogeneous character, which reduces the barrier of activation energy

and enhances the controllability. However, besides a controllable nucleation step, it

may also occur that during crystal growth and epitaxy uncontrollable heterogeneous

contacts of the starting phase with the walls of containers, ampoules, and crucibles

take place, which leads to unwanted heterogeneous nucleation. Let us quantify the

energy difference between homogeneous and heterogeneous nucleation.

5.2.2.1 Basic considerations

The classical theory for heterogeneous nucleation again assumes the simple droplet

model, but now in contact with a foreign solid area (substrate). Such interaction with

a solid underlay influences the shape of the droplet. Dependending on the contact

angle θ, also known as wetting angle, a cap-shaped spherical segment is formed (see

Fig. 5.9). This is due to the reduced work of nucleation introduced in eq. (5.14). Similar

to the situation at a crystal–liquid–vapor triple contour at melt growth that was dis-

cussed in Section 4.4.1, also here interface energies are in thermodynamic equilib-

rium, namely between: (i) solid substrate and vapor (SV), (ii) substrate and liquid

droplet (SL), and (iii) liquid droplet surface and vapor (LV). They are linked to one

another via the wetting angle θ as given by Young’s equation

cos θ=
γSV − γSL

γLV
(5:21)

with the interface energies between solid substrate and vapor γSV, solid and liquid γSL,

and liquid and vapor γLV, respectively. Depending on the degree of wetting the value of

θ lies in the range of 0° (total wetting) to 180° (quasi-non-wetting). Again, the free en-

thalpy of such spherical segment with radius rseg is composed of the volume and inter-

face-related enthalpy parts. However, now the volume of the spherical segment is
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Vseg =
4
3
πr3 1

4
1− cosθð Þ2 2+ cosθð Þ and the droplet surface consists of: (i) the free inter-

face with vapor FLV = 2π r h and (ii) the contact interface FSL =πr2seg with the substrate.

After inserting the spherical segment height h= rð1− cosθÞ and the radius of the contact

area of the spherical segment rseg = r sinθ, with r the radius of the segment curvature

(see Fig. 5.9), the Gibbs free energy change at heterogeneous nucleation is

ΔGhet = −
4πr3

3ΩV

1

4
1− cosθð Þ2 2+ cosθð Þ


 �

Δμ+ 2πr2 1− cosθð Þγlv + πr2sin2θ γSL − γSVð Þ

(5:22)

Note that whereas the interface area between the droplet and vapor is multiplied by

the new created (!) interface energy γLV (second term on the right side) the contact

area between droplet and substrate is not required to form a totally new interface

energy γSV but uses partially the already existing boundary energy between vapor

and substrate γSV > 0. Thus, in the third term the nucleated contact area between

droplet and substrate needs to be multiplied by the reduced value (γSL – γSV).

After some trigonometric transformations of eq. (5.22) we get the expression

Fig. 5.9: Sketched and experimentally proven correlation between non-wetting and wetting of a sphere

and spherical droplet segments, respectively, showing the difference between homogeneous and

heterogeneous nucleation due to varying wetting angles on a substrate.
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ΔGhet = −
4πr3

3ΩV
Δμ+ 4πr2γLV

� �
1

4
1− cosθð Þ2 2+ cosθð Þ= −

4πr3

3ΩV
Δμ+ 4πr2γLV

� �

fθ (5:23)

with the geometrical function fθ, mostly named wetting function, in which the hetero-

geneous case differs from the homogeneous one [compare with eq. (5.11)].

Of course, the wetting behavior on a crystalline substrate is crystallographically de-

termined due to the anisotropy of the interface energy. Depending on the orientation of

the substrate surface the wetting angle of a droplet of a given substance can differ

markedly. Examples are liquid droplets of dodecylamin: octanol: CCl4 on the (100), (110),

and (111) surfaces of an alaun substrate the images of which are shown in Fig. 5.9.

Whereas the (100) plane wets almost totally the (110) surface behaves like contact-free.

The critical nucleus radius r✶ is in principle obtained in the same way as for ho-

mogeneous nucleation by deriving and zeroing the eq. (5.23)

∂ΔGhet

∂r
= −

4πr2

ΩV
Δμ+ 8πrγLV

� �

fθ = 0 (5:24)

r✶het =
2γLVΩV

Δμ
≡ r✶hom jγLV=γ (5:25)

where the radius of heterogeneous nucleation represents the radius of curvature of

the spherical droplet segment (red r✶ in Fig. 5.9). Therefore, the critical nucleation ra-

dius is basically the same for heterogeneous nucleation as for homogeneous nucle-

ation, only the activation energy differs (under otherwise identical conditions). Inser-

tion of the critical radius r✶het in eq. (5.23) yields the critical activation energy (work of

nucleation) of heterogeneous nucleation

ΔG✶

het =
16

3

πγ3LVΩ
2
V

Δμ2
fθ ≡ ΔG✶

hom fθ (5:26)

with fθ =
1
4
1− cosθð Þ2 2+ cosθð Þ≤ 1, which means that the heterogeneous nucleation re-

quires less activation energy than the homogeneous nucleation.

Figure 5.10a shows the graphic dependence of the function fθ on the wetting angle θ.

If the wetting angle approaches 180° so that the function fθ ≈ 1 the spherical cap becomes

a complete sphere that no longer wets the substrate or container wall. Then the case of

quasi-homogeneous nucleation is obtained. Conversely, at strong wetting with very

small wetting angle, fθ decreases toward zero and the activation energy required for nu-

cleation in eq. (5.23) is greatly reduced. In between when the wetting angle is around 90°

the nucleus is of hemispheric shape and the function fθ ≈ 0.5. In this case, the nucleus

requires only half the activation energy. As is sketched in Fig. 5.10a it has only half as

much volume as a spherical nucleus during homogeneous nucleation. Usually, the situa-

tions with θ < 90° are classified as good wettable, as in the cases of silicon droplets on

Si3N4 (~20°), graphite (30°) and only just on fused silica (87°). On the other hand values of

θ > 90° are referred to non-wetting like molten GaAs on pBN (155°) or CdTe on graphi-
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tized fused silica (100°). The special case of so-called spreading at θ = 0° with fθ = 0 occurs

at ideal epitaxy designated as homoepitaxy (not to be confused with homogeneous nucle-

ation being exactly the opposite process). Figure 5.10b shows the free energy change ΔG

(nucleation work) and the related critical values ΔG✶ of homogeneous and heteroge-

neous nucleation at various wetting angles. As an example, a droplet of high-purity liq-

uid iron in contact with hypothetically different wetting surfaces is taken. The following

Fe parameters of its molten state have been applied: Tm = 1803 K, Δh= 13.8× 103J=mol,

γLV = 1.87× 10−4J=cm2
,ΩV =m ðNAρÞ−1 = 1.15× 10−23 cm3 with m and ρ the molar mass

and density, respectively. Equation (5.2) deviated by the Avogadro number was taken as

driving force, i.e., Δμ= Δh NA
−1 ΔT Tm

−1
= 0.38× 10−20J. First the homogeneous case was

estimated by using eqs. (5.25) and (5.26) and setting θ = 180° into the fθ function. At maxi-

mal observed undercooling of liquid iron ΔTmax = 295 K (see Table 5.1) critical nucleation

radius r✶ and related nucleation work ΔG✶ yield about 11.4 nm and 10.2 × 10−16 J, respec-

tively. With decreasing wetting angle, the critical nucleation work decreases drastically

(Fig. 5.10b). In reality, the solid nucleus formation in liquid iron plays an important role

in casting processes where the grain texture of the ingot is determined by the heteroge-

neous nucleation on a given mold wall (note, then the applied L-V surface tension used

so far should be replaced by the S-L interface energy, which is γSL ≈ 0.2× 10−4 J=cm2Þ.

Fig. 5.10: Calculated wetting function fθ (θ) (a) and free energy change ΔG versus nucleus radius r varying
the wetting angles θ from 0° to 180° of a liquid iron droplet (b).

148 5 Deviation from equilibrium



5.2.2.2 Application in epitaxial processes

In practice, in bulk single crystal growth and thin-film epitaxy, nucleation is initiated on

a monocrystalline seed or substrate. When a seed or substrate is used whose crystal

structure is identical to the fluid material to be crystallized or deposited, in other words

when the case of total wetting takes place, a two-dimensional (2D) homoepitaxial nucle-

ation is favored. In first approximation the height of such a nucleus is equal to the lattice

parameter of the given substance. After one 2D nucleus is formed, it would be preferable

if the whole interface plane is then rapidly completed by lateral growth. However, as we

will show below, in reality, the statistical character of the nucleation process generates

simultaneously many 2D nuclei coalescing during their lateral expansion. But first, for

simplicity, a single solid disk-shaped nucleus is formed on a homoepitaxial substrate in

a supersaturated vapor phase (Fig. 5.11, above left). Again, the nucleus activation energy

is composed of the negative volume part and positive surface term as

ΔGdisc = −
πr2a

ΩV
Δμ+ 2πraγ (5:27)

with r the disk radius, a the height of the disk to be equated at first approximation

with the dimension of the growth unit (atom, molecule) of the given nucleus material,

and γ the surface energy, which is now, however, exclusively acting between the solid

Fig. 5.11: 2D and 3D nucleation modes on substrates from vapor determined by the interplay of the three

interface energies.
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seed or substrate and the surrounding vapor. Thus, no interface related term of the

nucleus base has to be considered in eq. (5.27) due to the absolute structural fitting

between nucleus and seed or substrate. After ∂Δgdisk/∂r = 0 the critical nucleus ra-

dius is

r✶disk =
γΩV

Δμ
(5:28)

and the critical nucleation energy for a 2D disk-shaped homoepitaxial nucleus is then

ΔG✶

disk =
πaγ2ΩV

Δμ
(5:29)

Replacing the homogeneous droplet and disk models by heterogeneous polyhedral-

shaped 3D nuclei the situation becomes more realistic regarding the formation of a

single crystalline solid phase at epitaxial processes from vapor or melt–solutions. Fig-

ure 5.11 above right shows the model of such rectangular 3D nucleus of height h with

a quadratic main surface of edge length l. By all means, such a type of nucleus is not

unusual, like KCl on NaCl substrate, for example. The formation of such nucleus (n)

on a substrate (s) in contact with a vapor phase (v) changes the molar thermodynamic

potential of the system as

ΔG3D = −
l2h

ΩV
Δμ+ l2 γnv + γns − γvsð Þ+ 4lhγnv (5:30)

with the volume part –ΔGV = (l
2 h/ΩV)Δµ and the two interface parts. The first (middle

term) represents the change of the free interface energy between substrate and vapor

phase when a crystalline cuboid with surface energy γnv appears on the substrate and

creates the interface energy of the contact area between nucleus (n) and substrate γns
(adhesion energy). The second surface term stands for the formation energy of the side

walls.

The work of nucleation of such a cuboid depends on both the absolute dimen-

sions h and l and their ratio h/L (habitus). For a given volume l2h = const the work of

nucleation proves to be minimal when the sum of the two surface parts in eq. (5.30) is

minimum too as

∂

∂L=h
l2 γnv + γns − γvsð Þ+ 4lhγnv
� �

= 0 (5:31)

giving the equilibrium shape [relation of Dupré (1869)]

h

l
=

γnv + γns − γvsð Þ
2γnv

(5:32)

Using eq. (5.32) for replacing in eq. (5.30) h by l or l by h and zeroing the first deriva-

tives ∂Δg3D/∂h or ∂Δg3D/∂l becomes the critical edge length l✶ = 4ΩVγnv=Δμ or height
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h✶ = 2ΩVγnv=Δμ, respectively. Then the critical nucleation energy for a heterogeneous

rectangular 3D nucleus is

ΔG✶

3D = 16
γ2nvΩV

Δμ2
γnv + γns − γvsð Þ (5:33)

Based on the actual constellation of the three acting interface energies γij the follow-

ing three striking cases can occur:

i) γvs < γnv + γns so that after eq. (5.32) h > 0: there is only a small (or missing) interac-

tion with the substrate (comparable with non-wetting situation) and a certain nu-

cleus height is required for the growth. Such spatial shaping normally to the sub-

strate surface is defined as 3D nucleation process or rather as Volmer–Weber

mechanism (Fig. 5.11–1).

ii) γvs > γnv + γns so that after eq. (5.32) h < 0: there is a significant interaction with a

highly attractive substrate (comparable with wetting situation) and the lateral nu-

cleus spreading becomes the determining factor. Such occurrence is referred to as

2D nucleation process or rather as Frank–van der Merwe mechanism (Figs. 5.11–5.12).

iii) γvs = γnv + γns so that after eq. (5.32) h = 0: this is a particular case of barrier-free

layer-by-layer spreading over the substrate surface. However, beyond a critical

layer thickness hΣ > h
✶ is reached, which depends on strain and chemical poten-

tial deposited film, growth continues through nucleation mechanism. Such layer-

plus-island growth is named Stranski–Krastanov mode (Fig. 5.3).

In case of nucleation from a liquid or solution the related interface energies γnf and γsf
(with index f for a given fluid phase) have been used. More details from a molecular-

kinetic point of view will be given in the lecture part II. Here the discussion in Section 4.3

whereupon a nucleated crystallite possesses a certain polyhedral quasi-equilibrium

shape determined by the given crystallographic structure should be remembered. As

shown in Spec box 5.2, the formation energy of a homogeneous crystalline nucleus must

consider the anisotropy of the crystallographic planes Ahkl and related surface tensions

γhkl as

ΔG= −nΔμ+
X

γhklAhkl (5:34)

with n = Vcr/Ω the number of atoms or molecules in the nucleus. Of course, at a given

supersaturation or supercooling also both the habitus and size of a heterogeneous nu-

cleus have to remain the same Wulff’s central distances hhkl proportionally to the corre-

sponding surface energies γhkl. Thus, eqs. (5.30)–(5.33) have been modified accordingly

(the somewhat awkward procedure is here not shown but given in detail in the related

literature).

It is noteworthy that at the crystal growth from melt mainly a quasi-nucleationless

crystallization due to the very small supercooling (i.e., driving force Δµ) takes place.

This also happens at the propagating crystallization front due to the characteristic
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atomic roughness of a melt–solid interface (see lecture part II). One exception is the

presence of facets (i.e., atomically smooth faces) requiring more driving force and, thus,

a possible nucleation-assisted mode (see Section 4.4.4).

5.2.2.3 Nonequilibrium nucleus distribution

First Volmer assumed the probability of finding the equilibrium critical cluster number

N✶ consisting of critical number n✶ of atoms or molecules [compare with eq. (5.18)]

among the existing clusters as

N✶

i =Ni exp
−ΔG✶

kT

� �

(5:35)

with Ni the number of clusters consisting of i = 1, 2, 3, . . ., n atoms or molecules re-

ferred to as monomers, dimers, trimers, etc. Such a situation for the heterogeneous

case is sketched in Fig. 5.12a. There are disk-shaped clusters on a substrate within a

supersaturated fluid (e.g., vapor) having still an undercritical radius r < r✶ and pos-

sessing, thus, a high decay probability. At the same time a critical nucleus with r = r✶

(in red) and an overcritical nucleus with r > r✶ are added. Volmer’s related equilib-

rium distribution Ni(i) is shown by curve 1 in Fig. 5.12a. The number of critical nuclei

N✶

i is the lowest due to both decay and growth as equitable probabilities. At i > i✶ only

growth without reverse reaction is expected. As a result the number of overcritical

(growing) nuclei should be assumed as increasing as drafted by the dashed segment

in curve 1. However, this assumption proved to be incorrect and must be modified by

considering kinetic processes that deviate the situation toward nonequilibrium distri-

bution (demonstrating the close connection between thermodynamics and kinetics).

In 1935 Becker and Döring extended the treatment of the nucleation process by

considering the kinetic actions and related time behavior of the cluster distribution.

Accordingly, the clusters can grow and decay by attachment or detachment of single

atoms or molecules. As a result, the molar activation energy Δg for cluster formation

is a time-varying term and reduces by the amount Δgn – Δgn–1 when an atom is re-

moved, for example. Thus, an expression for the rate of nucleation considering growth

and decay had to be formulated. With the assumption that a cluster quantity Ni is

formed only by adding an atom to a cluster Nn–1 or by leaving a cluster Nn+1 and is

destroyed if it either gains or loses an atom, the time dependence of the cluster con-

centration is

dNi

dt
= JN − JN+1 = υ+n−1Nn−1 + υ−

n+1Nn+1

� �
− υ+n cn + υ−

n Nn

� �
(5:36)

with JN = υ+

n−1Nn−1 − υn-Nn the net flux of clusters through the sizes n and n + 1, and, υn
+

and υn
− the probabilities for attachment and detachment of single atoms or molecules,

respectively.
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Without entering the kinetic details the multiplication of the quantity of nonequilib-

rium critical nuclei N✶

i = Z Ni with the constant attachment probability to the nucleus

υn
+✶ = const yields the steady-state nucleation rate

J = Zυ+✶N✶

i = Zυ+✶Ni exp
−ΔG✶

kT

� �

(5:37)

with the Zeldovich factor Z = 1=n✶ð ÞðΔg✶=3πkTÞ1=2 ≥ 10−2 where n✶ is the number of

atoms/molecules in the cluster and Δg✶ is the formation energy of the cluster. Thus, Z

gives the probability that a nucleus at the top of the barrier will go on to form the

new phase, rather than dissolve. Adding N✶

i = Z Ni in Fig. 5.12a as curve 2, a quantita-

tively lowered course compared to curve 1 is obtained. Then, the nonequilibrium of

the process is characterized by both steady primary growth and possible decay con-

tinuing even after the critical nucleus creation. A quasi-mutual delivery and removal

of species from each other takes place whereas the larger nuclei are favored com-

pared to the smaller ones due to their smaller supersaturation known from the

Gibbs–Thomson effect [see eq. (4.10)]. They are growing at the expense of smaller

ones. Finally, only a few “winners” of largest size are remaining through coalescence

(see also the following chapter).

In Fig. 5.12b the nucleation rate as function on the driving force (supersaturation)

according to eq. (5.19) is sketched in order to illustrate its exponential character. For

1

2

Fig. 5.12: Becker–Döring’s nonequilibrium compared with Volmer’s equilibrium nucleus number (a) and

nucleation rate versus chemical potential (b).
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that purpose the indirect proportionality between the activation energy and driving

force ΔG ~ Δµ−1 was considered. A certain potential delay (critical driving force Δµ✶)

must be overcome in order to form critical nuclei. Sure, the better the wetting be-

tween nucleus and substrate or the higher the content of assisting foreign atoms or

molecules, the shorter is the delay.

Further, as will be discussed in the lecture part II, at heterogeneous nucleation,

the desorption and surface diffusion of atoms within the adsorption layer on a used

substrate must be considered. Then the exponential factor in eq. (5.37) is modified by

including the activation energies for desorption Ed and diffusion –Es so that the fol-

lowing completed expression for the nucleation rate is obtained

J = Zυ+✶Ni exp
Ed − Es − ΔG✶

kT

� �

(5:38)

5.2.3 Uncontrolled nucleation in crystal growth containers

Today, the unidirectional crystallization within a container or ampoule starting from

an artificial seed at the bottom proves to be one of the most effective production

methods of single crystals. The corresponding VB and VGF techniques are successfully

applied to grow many semiconductor compounds (e.g., GaAs, InP, and CdTe), oxides

and organic crystals of high quality. Due to the high diameter constancy and low ther-

mal inhomogeneities (small linear temperature gradients) a relative low defect den-

sity can be obtained. However, there arises a not yet completely solved problem of

uncontrolled nucleation at the inner container wall creating disoriented grains, dislo-

cations, and twins, which penetrate into the growing crystal. The origin proves to be

the contradiction between the desired non-wetting of the container wall and usually

concave isotherm courses. This will be explained in detail in the following.

First, an essential precondition for high-quality crystal growth in containers is the

non-wetting behavior between the melt and inner container wall to reduce the uncon-

trolled heterogeneous nucleation probability [see eq. (5.23)]. For this purpose either a

suitable container material is found or the wall is covered by a non-wetting thin-film

coating (e.g., by pyrolytic graphitization). Sure, the coating film must be strongly cohe-

sive. On the other hand, there is a characteristic difference of thermal conductivity in

the melt and solid λL ≠ λS. Especially in semiconductors λL is about two times higher

than λS in crystalline phase. In Fig. 5.13 the thermal conductivities of important semi-

conductors are tabulated. In consequence, the shape of the propagating solid–liquid

interface (IF) becomes concave. This is due to the heat “holdup” during its transport

from the hot region of the melt toward the IF whereupon the lower thermal conduc-

tivity within the growing crystal impedes the flux of the arriving heat quantity. Conse-

quently, the path of the heat flux is changed toward radial direction, creating by this

means a concave course of the melting point isotherm (see Fig. 5.13, left). Thus, the IF
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will be concave-curved too. However, from mesoscopic point of view this is only valid

until the wall proximity because in this region the IF will be convex recurved due to

the non-wetting situation at the container wall (magnified situation in the middle of

Fig. 5.13). Some wetting angles on typical container walls are given in the table below

right. As a result a ring area of enhanced undercooling (driving force) between the

convex IF rim and concave melting point isotherm is evolved. This may lead to un-

wanted nucleation in this region with the abovementioned consequences. Such effect

is being further exacerbated by the presence of facets at the interface periphery, an

aspect already discussed in Section 4.4.3. It was shown that the facets represent the

planes of lowest free interface energy and, thus, of highest undercooling. In the course

of interaction between melt, facet, and container wall, the disoriented nucleation and

even twinning probability are enhanced.

The best means to counter is to ensure a near-flat or slightly convex interface shape

(as shown in Fig. 5.13, right) that proves to be a serious task for the hot zone design.

Fig. 5.13: Wrong nucleation within the undercooled region at the inner container wall due to concave melting

isotherm and non-wetting of the melt at VB/VGF growth to be avoided by a convex isotherm (with permission
of Elsevier (Tables)).
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5.2.4 Precipitation in cooling crystals

The formation of precipitates of foreign phases in an as-grown crystal during its cool-

ing down to the room temperature is a solid–solid nucleation process taking place at

enhanced concentrations of an added component due to its characteristic retrograde

solubility. For instance, in Fig. 3.28b the retrograde solubility curves of impurities/dop-

ants in silicon crystals are shown. It is a well-known serious problem of oxide precipi-

tation in silicon Czochralski crystals because of the relative high oxygen concentration

within the melt released from the fused silica container and incorporated into the grow-

ing crystal. While at temperatures near the melting point the oxygen solubility is still rela-

tive high (~1018 cm−3) during cooling to 600 °C it falls below 1016 cm−3. As a consequence

microscopically SiOx precipitate modification (crystoballit, quartz) can be formed. That

means in such a case the nucleation is combined with a chemical reaction between the

matrix (Si) and the foreign substance (O). Further, oxygen precipitates in CZ silicon crys-

tals are growing on clusters of excess vacancies quasi-heterogeneously. Also other impuri-

ties, in particular fast diffusing metals, like Cu or Au, may be heterogeneously precipi-

tated at intrinsic point defect aggregates like dislocation loops (swirls) but apart from a

chemically reactive process with silicon. It has been observed that already an Au content

of about 1013 cm−3 is sufficient to result in such a preferential Au precipitation.

Precipitation plays an evident role in binary and multicompound crystals of nonstoi-

chiometric composition. It is connected with the excess concentration of one of the com-

ponents, which is at high temperatures still solved within the matrix as interstitial or va-

cancy atoms. As was shown in the Figs. 3.13, 3.14, and 3.28a also the intrinsic point defect

solubility is decreasing with reducing temperature, clearly visible in the retrograde soli-

dus curves of the homogeneity regions (see Sections 3.2.4.2.1–3.2.4.2.2). Again, during the

as-grown crystal is cooling down the solidus is crossed and nucleation of second-phase

particles or microvoids takes place via interstitial or vacancy conglomeration, respec-

tively. Thus, one has to differ between homogeneous or heterogeneous precipitation

within the compound matrix or at the contact with a supporting another defect aggregate

(e.g., dislocations and grain boundaries), respectively. Usually, the heterogeneous case re-

quires much lower nucleation energy and is therefore the favored type. Whereas homo-

geneously nucleated precipitates show a very small size of some 10–100 nm and their

analysis requires high-resolution electron microscopy, heterogeneously formed precipi-

tates decorating dislocations are well detectable by IR transmission microscopy. Depend-

ing on the degree of deviation from stoichiometry average precipitate densities in the re-

gion of 108–1012 cm−3 have been found in arsenic-rich GaAs and Te-rich CdTe, for

example. Principally, in all materials such second-phase particles impair not only the

wafer polishing and epitaxy processes but also the transmission quality by light scattering

of optical devices made from such wafers. Measures of their minimization are near-

stoichiometric growth conditions (Section 3.2.4.2.3) and wafer annealing.

Generally, the nucleation of precipitates can be treated analogously to the nucle-

ation of a droplet in a vapor or a nucleus within the melt (see Section 5.2.1). However,
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an additional complication now arises, caused by the small change of the matrix vol-

ume, which must be accommodated elastically leading to a strain effect, which has to

be considered in the volume part of nucleation free energy –ΔGV. The appearing elas-

tic energy Eel increases with growing precipitate volume Vpr via strain energy εel per

volume unit as Eel = εel Vpr. For the homogeneous case, eq. (5.11) becomes

ΔG=
4πr3

3
−Δμ=ΩV + εelð Þ+ 4πr2γ (5:39)

where r is the nucleus radius, Δµ is the driving force, ΩV is the specific volume of the

building blocks (atoms and molecules), and γ is the specific solid–solid interface en-

ergy between the matrix α and precipitating phase β. Accordingly, the critical precipi-

tate radius of the ΔG(r) curve is

r✶ =
2γ

Δμ=ΩV − εelð Þ (5:40)

That means the ratio between the α–β interface energy and strain energy begins to be

a determining factor. In the simplest case, the elastic strain depends on the relative

misfit between the lattice parameters of both solid phases δ = (aα – aβ)/1/2 (aα + aβ) and

the (isotropically assumed) elastic modulus of the matrix Eα. When the elastic strain

acts in the matrix only it can be written as

εαel =
Eα

1− να
δ2 f

b

a

� �

(5:41)

where να is the Poisson’s ratio of the matrix and f (a/b) a shape factor for the axis lengths

of a simplified rotational ellipsoidal precipitating nucleus. From eqs. (eq. 5.39) and

(5.40) it follows that at only slightly differing lattice parameters (δ → 0) the elastic strain

can be neglected and the precipitate has the spherical shape, showing the lowest prod-

uct between interface energy and area. This case is referred to as coherent precipitation.

Against it at markedly differing lattice parameters an incoherent case will occur where

the shape factor comes into action and a compromise between minimization of the elas-

tic strain and interface energy is taking place. From eq. (5.41), it follows that at constant

precipitate volume εαel decreases in accordance with the order of sphere–rod–disk. This

ranking often corresponds with the growth period of precipitates. Whereas at both

small volumes and δ values spherical or needle-shaped forms are preferred, with in-

creasing volume the disk shape prevails due to the εαel minimization.

Of course, the detailed process dynamics and kinetics of precipitation proves to be

much more complex. First, the crystallographic structures of both solid phases must be

considered. It can be assumed that the interfacial energy corresponds to a local mini-

mum when the precipitation reaction realizes a singular interface. Mostly the structural

misfit leads to an enormous elastic deformation field around the precipitates generating

dislocations. In fact, a marked enrichment of dislocations is reported in many crystals

around second-phase particles. Finally, in nonstoichiometric compound crystals the pre-
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cipitates may be first nucleated in molten state (as droplets) when they consist of an

excess component with lower melting point than the matrix. Thus, the precipitate runs

through the solidification process during cooling down evoking a delayed structural

stress effect. For deeper information on precipitation fundamentals the interested read-

ers are referred to the relevant rich literature and planned lecture part IV on defects.

However, one more important fact must be added. Each precipitation is subjected

to the diffusive transport of its building units. In case of a homogeneous distribution of

an intrinsic kind of point defects (interstitials or vacancies) within the cooling crystal

the sites of their precipitation are distributed uniformly as well. The growth of the just

generated nuclei requires a permanent feeding diffusion from adjacencies, i.e., of inter-

stitial atoms or vacancies for precipitates or microvoids, respectively. In the end, the

ripening size of both configurations is limited and depends on the relative distance to

one another. The growth is completed when the diffusion spheres of each precipitate

are exhausted and overlaying. The final size of precipitates with diffusion spheres (ex-

pressed as radius of assumed spherical shapes) overlapping on another were funda-

mentally derived by Ham (1958) and specialist byWilkes (1983) for silicon oxide precipi-

tation in silicon crystals. Hence, typical sizes of homogeneously nucleated precipitates

are of the order of 10–100 nm, seldom reaching one µm. This is a characteristic feature

that makes precipitates differ from inclusions, which are incorporated during crystal

growth at the propagating interface and showing dimensions of some µm (as the author

found out at growth of CdTe crystals from tellurium-rich melt, for example). Of course,

if a heterogeneous precipitation by decoration of presented dislocations occurs, a pre-

cipitation-free area around the dislocations is formed. Due to the lower heterogeneous

nucleation energy (see Section 5.2.2) the building units are already consumed before ho-

mogeneous nuclei are generated. Finally, the precipitation density and size depends on

the temperature (diffusivity) and cooling rate too. As is well-known, these relations are

summarized in so-called TTT (temperature–time–transformation) diagrams.

5.3 Ostwald ripening and grain coarsening

At a free multinucleation process without artificial nucleation, when an intentional nu-

cleus selection is missing or a too high supersaturation is acting, or when too fast cool-

ing and crystallization rates are used, then a multigrain structure is formed. It consists

of coalesced crystallites, after stochastic nucleation, which show varying crystallo-

graphic orientations. Although such a texture is typical and is of importance in metal-

lurgical processes, such as casting, it has little to do with our lecture topic – the growth

of single crystals. Nevertheless, due to the high significance of mass production of multi-

crystalline silicon (mc-Si) ingots for photovoltaics it will be briefly described here too.

Before the final configuration of a multigrain structure is completed it undergoes

a dynamic process of ripening characterized by decay or dissolution of small nuclei

and clusters in favor of larger nuclei or crystallites. This is due to the enhanced trans-
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port of atoms or molecules from the smaller to the larger objects initiated by the po-

tential difference between them, as sketched in Fig. 5.14 (above right). Even if coales-

cence occurs the demolition of small grains is continued due to enhanced transport of

atoms from fluid and even from smaller to larger grains leading finally to reduction

of the total interface energy between the grains. This phenomenon was first described

by Ostwald in 1897 and named after him as Ostwald ripening.

The dominant source of such energy and mass transfer proves to be the relative clus-

ter size. That means the Gibbs–Thomson effect (Section 4.2) becomes significant. As

shown in eq. (4.10), the change of the chemical potential depends on the radius as

Δμ=
2γΩV

r
(5:42)

playing a decisional role even in small clusters whereupon a marked excess of energy

is cumulated. Thus, the difference in chemical potential between clusters with small

and large radius is

μr!0 = μr!∞
exp

2γΩV

rkT

� �

(5:43)

Fig. 5.14: Numeric 2D modeling of grain coarsening and Ostwald ripening (the portrait of W. Ostwald is
public domain; with permission of Elsevier (middle) and Springer-Nature (below)).
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Assuming nucleation of solid clusters from the vapor and replacing the chemical po-

tential by the vapor pressure (see Spec box 3.3), eq. (5.43) can be expressed by the Ost-

wald-Freundlich (1909) equation

pr!0

pr!∞

=
p rð Þ
peq

= exp
2γΩV

rkT

� �

= exp
rcrit

r

� 


(5:44)

where p(r) is the partial pressure at a curved interface of radius r (of the given cluster),

peq the vapor pressure at flat interface (equilibrium pressure between the vapor and

condensed phase), and rcrit = 2γΩV=kT. Thus, the shrinking of smaller clusters by reeva-

poration due to the higher partial pressure pr!0 > pr!∞ is obvious. Then the releasing

atoms can diffuse along the substrate surface to the larger clusters. When smaller clus-

ters shrink to their critical nucleus size, they become thermodynamically unstable and

spontaneously disintegrate.

In the middle of Fig. 5.14, the 2D-modeled time course of such process in a two-

phase mixture is shown. After the nucleation within the fluid phase of overcritical

crystallites with random orientation occurs their growth and coalescence takes place.

When two particles with different orientations are in contact with each other, a grain

boundary forms. Two particles will coalesce when they have the same orientation,

which also happens in real systems. Further down the course, larger grains prevail

(white arrows) and most small grains disappear (pink arrows).

An identical situation is obtained at growth from solutions where the chemical

potentials are expressed by concentrations (or solubilities) and the higher supersatu-

ration (solubility) of small clusters promotes the transfer of atoms or molecules from

them to the larger crystallite by diffusion through the solution.

As was mentioned above, the ripening principle is continuing in a multigrain

structure, i.e., when grains of different sizes are in contact with each other. At high

enough temperature (let us say immediately after the nucleation process on the cool-

ing bottom of a container for casting or directional solidification) the diffusive mass

transfer from the smallest toward the largest grains occurs. This process is named

grain coarsening. Again, the dominant source is the Gibbs–Thomson effect [see eq.

(4.10)] promoting the shrinking of the smallest subgrains. Additionally, the relative

misorientation proves to be another factor of grain mobility. The enhanced free en-

ergy per unit volume of atoms inside small grains with low radii of curvature produ-

ces a boundary migration (shrinking) toward its center of curvature. Finally, the

boundary between the grains (grain boundary) is a high-entropy defect in the crystal

structure and so it is associated with a marked excess of energy. The resulting thermo-

dynamic driving force is acting toward reduction of the total area of boundary. This

occurs, when the grain size increases, accompanied by a reduction in the actual num-

ber of grains per volume.

The local velocity of a grain boundary at any point is proportional to the local

curvature of the grain boundary as
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vGB =M γGB κ (5:45)

where M is the (kinetical) grain boundary mobility, γGB the grain boundary (“inter-

face”) energy, and κ the sum of the two surface curvatures. In comparison to the

phase transformations the energy available to drive grain growth is very low and so

it tends to occur at much slower rates and is easily slowed by the presence of second-

phase particles or solute atoms in the structure.

Figure 5.14 below shows the longitudinal section of the 2D modeled final stage of

grain growth completion of a free-grown alum crystal started from stochastic nuclei

of various orientations. The growth competition results in the consumption of poorly

oriented crystals (greenish and bluish in color) and in survival of favorably oriented

ones (reddish). Further geometrical selection with propagating crystallization proves

to cause the growth rate differences between differently oriented grains leading to

mutual overgrowth. This effect takes place when at the fluid–solid interface the grains

show faces of differing atomically flatness, i.e., of various free interface energies. Ac-

cording to this an atomically flat plane drops behind an atomically rough one (see

lecture part II). Finally, grains oriented in the direction of highest thermal conductiv-

ity seem to be additionally favored at crystallization in a temperature gradient.

5.4 Nonequilibrium (kinetic) phase diagrams

As discussed in Section 5.1, a certain deviation from exact thermodynamic equilib-

rium is required to ensure crystallization by the driving force of crystallization or

growth affinity. This holds true not only for the cases of nucleation of a (new) solid

phase within a fluid one but also for the propagating fluid–solid interface of each

crystallizing bulk or thin-film system. Therefore, the equilibrium phase diagrams

treated in Chapter 3 do not exactly reflect the position of a growing interface. Of

course, the usually acting supercoolings or supersaturations are relatively minimal,

especially at the growth from melts. Also at the growth from solutions the crystalliza-

tion velocities are so small that a near-equilibrium state can be approximated. How-

ever, the situation is changed at the growth under high supersaturations, like from

the vapor phase, especially by the epitaxial methods MBE and MOCVD (see. Fig. 5.2) or

in solidification processes of very high cooling and crystallization rates (e.g., casting).

Strictly speaking, also at the single crystalline growth of materials showing atomically

smooth interfaces, like most oxides and some semiconductors (see lecture part II),

even at melt and melt–solution growth there is a characteristic kinetically determined

retardation of the interface behind the equilibrium isotherm. Considering the devia-

tion from equilibrium by undercooling or supersaturation nonequilibrium (kinetic)

phase diagrams can be constructed.

Figure 5.15 shows three calculated T–x projections of nonequilibrium phase dia-

grams of a two-component system with the constituents A and B. The model developed
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by Los and Matovic (2005) describes the effective segregation taking place during the

crystallization of solid–solutions from a binary liquid mixture, which incorporates the

interfacial segregation and both mass and heat transport limitations in a coupled way.

It is based on nonequilibrium thermodynamics (see Section 5.5), yielding a linear growth

rate for each component and the theory of hydrodynamics with moving boundaries,

assuming fixed boundary layers for both mass and heat transport (see lecture part III).

It allows constructing the composition of the solid phase growing at nonequilibrium

conditions for a given undercooling. Also the temperature and composition of the liquid

phase at the interface can be read from these diagrams.

The T-axis of the binary material examples shown is replaced by the dimensionless

bulk liquid temperature θ = T/TB with TB the melting temperature of the component B

with the highest melting temperature. Accordingly, the relative bulk undercooling ∆θ

is defined as

Δθ=
ΔT

TB
=
Teq − T

TB
(5:46)

where Teq is the equilibrium temperature of the given melt–solid composition. As can

be seen in comparison with the equilibrium phase diagrams the nonequilibrium pro-

jections are shifted downwards. The difference between the component concentra-

tions in the liquid and solid phases (liquidus and solidus courses) are approaching in

the nonequilibrium diagrams with increase of the undercooling (and also of the crys-

Fig. 5.15: Nonequilibrium (kinetic) phase projections (with permission of Am. Chem. Soc.).
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tal growth rate). That means a kinetic distribution coefficient ki can be deduced differ-

ing from the equilibrium coefficient k0 introduced in Section 3.2.6.

Once again, in usual bulk single crystal processes the deviation from the phase

equilibrium isotherm is minimal due to the usual low crystallization rates so that the

equilibrium phase diagrams can be used as very good approximation. Nevertheless, the

interest in adapting each growth step to the real nonequilibrium (kinetic) situation as

precisely as possible is increasing, particularly for the study of segregation effect and

the resulting distribution functions along the growing crystal. Progressive automation

principles, such as model-based control of the crystal growth process, require such an

approach.

5.5 Nonequilibrium thermodynamics: basic principles for crystal

growth

As already emphasized in Section 1.2, each crystal growth system is characterized by

import and export of heat fluxes. Further flow processes are taking place within the

growing and cooling crystal caused by inhomogeneous component and thermal stress

distributions evoking mass diffusion and elastic energy dissipations. Strictly speaking,

each crystal growth arrangement is a “thermodynamically open system”. Following

the second law of thermodynamics nonequilibrium processes lead to a positive en-

tropy production that never reaches zero as long as nonequilibrium is acting. Such

situation can be described by principles of “nonequilibrium (irreversible) thermody-

namics” whereupon the time dependence of the potential of Gibbs is irreversible

dG

dt
=
∂H

∂t
−
∂S

∂t
T with

∂S

∂t
= PS > 0 (5:47)

where H and S are the system enthalpy and entropy, respectively, T is the absolute

temperature, and Ps is the production of entropy not coming to a standstill. Figure 5.16

summarizes the phenomena of a crystal growth process, which strictly speaking make

it necessary to treat it as a thermodynamically open system.

The total energetic entropy production rate combines the sum of the partial prod-

ucts of the driving thermodynamic forces Fi and flux density Ji for each dynamic

event proceeding in both fluid phase and growing crystal

∂S

∂t
=

X

Fi Ji (5:48)

Therefore, in material systems the fluxes couple the entropy production with conduc-

tive and frictional processes responsible for energy dissipations. According to the evo-

lution criterion of Glansdorff and Prigogine (1971) in such systems self-organized states

designated as dissipative structures can be formed. This occurs when the export of

entropy exceeds a critical value of the internal entropy production. It is clear that
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such reduction of the inner entropy is associated with enhancement of ordering and,

thus, of structuring possibility. Actually, dissipative structures are observed in crystal

growth processes in the form of convection patterns in melt and solution, cellular ar-

ranged melt–solid interfaces, dendrites and dislocation cell patterns, for example.

Mostly, they cause unwanted mesoscopic chemical and structural inhomogeneities.

However, self-ordering may also prove useful especially in patterning of highly or-

dered nanocrystals by means of epitaxial processes. Further, steady-state periodic in-

terface structures could help obtain periodic superstructures. In the following we will

give an insight into the basics and possible applications of the irreversible thermody-

namics in crystal growth. In this, the relative complex mathematical treatment will

not be outlined in detail. For more information on this subject reference to the appro-

priate literature is made.

It must be underlined again that the phenomenological treatment of single crystal

growth processes in the sense of equilibrium thermodynamics is quite acceptable due

to the usually minimal deviation from phase equilibrium, more, when a good thermal

isolation allows assuming them as quasi-closed systems. On the other hand there are

numerous processes where the equilibrium is markedly exceeded, as in high phase

potential differences (supercooling, supersaturation), very fast growth and cooling

rates of the crystalline phase, well-developed convective conditions, thermoelastic

stress dissipation in conjunction with high dislocation mobility, etc. (see Fig. 5.16).

Fig. 5.16: Principles of quasi-open crystal growth systems with flux export to be treated as

thermodynamic nonequilibrium with irreversibility of Gibbs’ potential.
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The total inner system entropy S = SΣ consists of certain sub-entropic parts speci-

fied in Fig. 5.17. In the case of crystal growth these are the terms related to heat flow

ST, mass transfer Si, friction Sη, and any internal (chemical) reactions SQ, which in

sum do not reach maximum entropy

SΣ = ST + Si + Sη + SQ + � � � < Smax (5:49)

According to eqs. (5.48) and (5.49), the specification of the time dependence of each

sub-entropy part reveals the entropy balance equation (entropy production rate) in

the intensive form

∂s

∂t
=

X

Fi Ji = jq∇
1

T
−

X

ji∇
μi
T

+
1

T
ση:∇ν−

1

T

X

μiQi > 0 (5:50)

with the heat, mass, friction (viscous dissipation) and chemical reaction-related entropy

production parts (in the shown order of the right-hand side). Explicitly the terms mean:

i) the heat conduction flux density jq = –λ∇T (λ – thermal conductivity) to the tempera-

ture gradient as driving force, ii) the sum of acting i particle flow densities (diffusivities)

to the chemical potential gradients, iii) the (convection-related) viscous stress tensor ση
(usually taken proportional to the viscous strain tensor ε as ση = c: ε or in terms of ten-

Fig. 5.17: The evolution criterion of Glansdorff and Prigogine applied to thermodynamic nonequilibrium

crystallization processes with continuous entropy production clarifies the appearance of dissipative

structuring (the portrait of I. Prigogine is public domain; with permission of Elsevier (formula)).
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sorial product of the components σij = Σcijkl: εkl), which is the symmetrical part of the

macroscopic velocity gradient ∇ν, and iv) the internal chemical reaction productivity

μiQi for small deviations from equilibrium (holding true in usual crystallization pro-

cesses), equated with K
P

krA (K – reaction constant, kr – rate constant, A – reaction

affinity = −
P

vri μi=kT where vri is the stoichiometric coefficient of species i in reaction

r). Such chemical affinity can also refer to the tendency of an atom or molecule to com-

bine by chemical reaction with atoms or molecules of unlike composition. Generally,

when a chemical reaction is an irreversible process then it produces entropy. The

minus sign stands for the decrease of thermodynamic potential as chemical reaction

proceeds. Normally, in crystal growth processes any chemical reaction should be com-

pleted immediately at the interface and integrated in the latent heat of crystallization

the removal of which is implied in the term of heat flux density. Nevertheless, during

the cooling down process of multicomponent crystals any new reactions might become

involved like complex formation and precipitation, for example.

How is a crystallization system able to self-organize dissipative structures and main-

tain its stable existence far from equilibrium? The main condition is its openness that

enables continual flux of energy (see Fig. 5.16), into and out of a dissipative structure,

which leads toward self-organization and ultimately the ability to function at a state of

nonequilibrium. Figure 5.18 shows some images of self-organized dissipative structures

being typical for crystal growth processes, such as the convective cell structuring within

a melt heated from below (1), cellular interface formation when the criterion on mor-

phological stability is neglected (2a,b), and dislocation cell patterning behind a growing

interface (3a,b). We will come back to these phenomena and their origin parameters in

parts III and IV when heat and mass transfer as well as defects are treated.

As per Glansdorff and Prigogine dissipative structures can exist in a stable station-

ary form because each deviation from the stability enlarges the entropy production

according to Pinst. > Pstab. ⇒ ∂S/∂t ≫ 0 and, hence, enforces the repulsion of the struc-

tural perturbation bag to the steady state one. Actually, a growing melt–solid interface

of cellular morphology is quite stable within a certain small parameter variations.

This is also well-known from fast growing dendrites. Generally, in a multiflux and

multiforces system the maintenance of the steady-state total entropy production re-

quires the constancy of all acting partial entropy productions together as listed in eq.

(5.49). Upon change of one of them the whole system reacts sensitively (note in the

standard crystal growth practice this is rarely the case, but it could take place when,

for instance, the friction related entropy part is changed by modifying an external en-

ergy input like magnetic Lorentz force). The sudden loss of one of the entropy parts

would decrease the total entropy and, thus, an altered dissipative structure pattern of

higher order (so called super-order) would be generated. Figure 5.19 demonstrates

such an example. Two numerically calculated dendrite morphologies are formed in a

supercooled Fe–B melt–solution under conditions far from equilibrium. For compari-

son the near-equilibrium shape of an iron crystal is sketched when growth at thermo-

dynamic equilibrium would take place (Fig. 5.19a). Both dissipative structures were
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grown from a crystallization center under differing transport conditions, in other

words, by varying the number of entropy producing parts responsible for heat and

mass transfer. In the case when the growth is controlled by both heat and mass trans-

fer, almost smoothed (rounded) dendrite branches are formed (Fig. 5.19b). In compari-

son, when the growth is limited by diffusion of the dissolved component only and,

thus, the total entropy production is reduced by the heat transfer related part, the

dendrite becomes highly branched reflecting a super-ordered situation (Fig. 5.19c).

Therefore, the removal of one or more partial entropy parts increases the degree of

dissipative ordering.

Additionally, the ordered structure can adopt a steady-state oscillating mode. Such

transitions have been widely studied in convective melt and solution volumes, espe-

cially in dielectric systems of low thermal conductivity. Varying states of order can

even create bifurcations, which are unpredictable, irreversible, and extremely sensitive

to change. That means the structure mode turns into branches (e.g., two oscillation fre-

quencies appear when convection vortices are pulsating in diameter and rotation).

After the bifurcation event, the system tends spontaneously to reorganize because each

branch that was produced has less entropy, but in accordance with the second law of

thermodynamics, in sum the same entropy as the ancestral situation.

Fig. 5.18: Characteristic self-organized dissipative structures with reference to crystal growth (public domain
of Wikipedia (1); with permission of Elsevier (2a, 3b), Taylor & Francisen (2b) and John Woley and Sons (3a).

5.5 Nonequilibrium thermodynamics: basic principles for crystal growth 167



As was already mentioned above, dissipative structures maintain their state by ex-

changing energy and matter constantly with the environment. This continuous inter-

action enables the system to establish an ordered structure with lower entropy than

that of equilibrium state. A possible rhythmic structural situation can be described

through the study of instabilities in nonequilibrium stationary states. One of the best-

known physical ordering phenomena is the formation of convective Benard cells in a

melt heated from below (approximately comparable with a Czochralski crucible)

shown in Fig. 5.1. In 1900, Benard observed during heating from below of a thin fluid

between two parallel horizontal plates that at a critical temperature difference the ele-

vating effect of expansion predominates and the fluid starts to move in a structured

way. It is divided into horizontally side-by-side arranged hexagonal convection cells

in which the fluid rotates in a vertical plane. At the low plate the fluid is heated and

rises but is cooled at the high plate leading to its density increase and movement

downward. Such a structure needs continuous supply of energy and disappears as

soon as the heating stops. The critical temperature difference ΔTc can be determined

from the critical dimensionless Rayleigh number acting in such a thin melt layer with

quasi unlimited radial extensions

Fig. 5.19: Illustration of super-ordered dissipative patterning by removing of partial entropy parts from

the total system entropy (public domain of Wikipedia (a), open access of Intech Open (b, c)).

168 5 Deviation from equilibrium



Rac =
gβTh

3

νa
ΔTc = 1707 (5:51)

where g is the gravitational acceleration, βT the thermal expansion of the melt vol-

ume, h the distance between the plates, ν the kinematic viscosity, and a the thermal

diffusivity ð= λ ρ−1 cp
−1Þ. Therefore the critical temperature difference is

ΔTc = 1707 νa gβTh
3

� �−1
(5:52)

According to the hydrodynamic analysis the approximate velocity distribution in the

Benards cells is

ν zð Þ= Ra−Racð Þ=C½ �1=2 cos 2π=λcellð Þ−1 (5:53)

where z is the vertical cell axis, C the constant, and λcell the repetition length of the

cells aligned horizontally next to each other. The near hyperbolic cosine dependence

between the velocity V(z) and the Rayleigh number Ra reflect the bifurcation behav-

ior at the critical value Rac at the curve minimum. That means, when the temperature

difference is above a critical level, the resting fluid becomes unstable and it rotates in

two structural states: one rotating toward the right and the other toward the left.

Another example of the application of the principle of nonequilibrium thermody-

namics is the study of morphological stability of a cellular solidification front during

unidirectional growth of a binary alloy by using the Glansdorff–Prigogine formalism

generalized for surfaces (interfaces). Figure 5.20 shows three in situ images of a propa-

gating steady-state melt–solid interface – one of flat morphology at near equilibrium

conditions and the other two of cellular morphology at various deviations from thermo-

dynamic equilibrium. The sketch presents a two-dimensional cell as a trigonometric

function propagating along the z-axis with normal velocity νn and having the cell peri-

odicity (frequency) ω. Assuming that both phases S and L are infinite along the growth

direction z and that the considered open thermodynamic system is limited between the

boundaries zS and zL, then the wavy interface shape ϕ can be described by a cosine

ϕ=ϕ0 cos ωyð Þ=ϕ0 cos
2π

λcell
y

� �

(5:54)

where ϕ0 is the interfacial (cell) amplitude, y the coordinate along the interface, and

λcell = 2π/ω the cell width. Now the question arises under which conditions such inter-

face morphology remains stable or rather which growth parameters ensure a con-

stant cell width during the growth process? In 1981 Billia et al. treated this problem

mathematically and compared the results with experimental studies. The principle

approach is the following.

First, viscous dissipation (convection within the melt) and chemical reactions are

excluded. Thus, the entropy production according to eq. (5.50) is reduced to the heat-

and mass-related parts
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P=
ds

dt
= jq∇

1

T
−

X

ji∇
μi
T

(5:55)

Generally, for a steady-state (stable) interface shape ϕ, the related surface integral can

be derived from the variation principle ∫ϕ P dϕ (see textbooks on stability analysis). Then

the stability condition according the Glansdorff–Prigogine general evolution criterion is

ð

ϕ

jq∇δ T
−1
ϕ −

X

jiδ ∇
μi
T

� 


ϕ


 �

nϕdϕ≥ 0 (5:56)

where δ stands for the variation (perturbation), nϕ is the normal to the interface in the

growth direction, and Tϕ is the temperatures of the interface being quasi the melting

point of the alloy (note when this value is not in equilibrium with the melting point due

to certain required undercooling as driving force of crystallization, as was treated in

Section 5.1, the kinetic growth coefficient should be integrated; see lecture part II). Next

the heat and mass flow densities are specified. The quantity of the heat flow through

the growing interface is taken from the well-known equality νnLρS = λL∇nTL − λS∇nTS

(see lecture part III) with L the latent heat of crystallization, ρ the density of solid, λL,

λS, the thermal conductivities and ∇nTL, ∇nTs the temperature gradients in the melt (L)

and solid (S), respectively. The mass flow through the interface takes from the balance

Di∇nxi = νnxi k0 − 1ð Þ with Di the melt diffusion coefficient of the impurity i, xi the mole

Fig. 5.20: Morphological stability of a cellular solidification front (with permission of Elsevier (left images).
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fraction, and k0 the equilibrium segregation coefficient (see Section 3.2.6). Therefore,

eq. (5.56) becomes

ð

ϕ

λL∇nTL − λS∇nTSð Þδ T−1
ϕ −

X

Di∇nxiδ
μ1L − μ2L

T

� 


ϕ


 �

nϕdϕ≥ 0 (5:57)

where µ1 L, µ2 L are the chemical potentials of the two components in the melt consist-

ing of matrix 1 and impurity (dopant) 2.

Next is presumed that the heat flow balance is always constant without any per-

turbations so that the heat flow related term in eq. (5.57) can be neglected. This is

quite legal when no oscillating convection is acting. In addition, the alloy is assumed

to be diluted x2L ≪ 1. Finally, without detailed derivations, the integral within the

boundaries ±π/ω (see Fig. 5.20) is reduced on the stability of the concentration gradi-

ent in the melt along the cell contour

δω=ωð Þm
ðπ=ω

−π=ω

y ∂x2L=∂yð Þdy≥ 0 (5:58)

where δω/ω is the lateral perturbation of the cell width and m=∂T=∂x2l is the slope

of the liquidus in the T, x–phase projection. As the actual steady cellular state must be

stable to any disturbance, it will correspond to the equality sign in eq. (5.58), which

means that the entropy production is constant and, thus, δP = 0. After the functional

expression of the mole fraction along the interface contour (here not shown) the sta-

ble cell periodicity ω= 2π=λcell is

ωstable =
2

ϕ0

−
νn

2D2
(5:59)

with the cell amplitude ϕ0 =D2=νn k20 − 1ð ÞAE 1+ k0νn=D2 �ω− νn=D2Þð �½ , AE is the coeffi-

cient characteristic of solute segregation in a cell, and �ω= νn=2D2 νn=2D2
2
+ n2ϕω

2
� 
h i

.

The comparison between theoretical and experimental cell sizes obtained by crys-

tallization of Fe-8 wt% Ni alloys at various growth velocities showed quite a good con-

formity. For instance, at νn = 4.1 cm/s and a temperature gradient of 31 K/cm experi-

mental and theoretical cell widths yielded 500 µm and 410 µm, respectively.

There could be more examples like modeling of nonequilibrium phase diagrams

already introduced in Section 5.4. These calculations are also based on principles of

nonequilibrium thermodynamics whereupon the growth of binary mixed crystals

from a liquid mother phase has been correlated to the component fluxes toward the

solid phase (matrix A) and reverse from it (admixture B) depending on the degree of

supercooling (deviation from thermodynamic equilibrium).

A further important phenomenon of nonequilibrium thermodynamics is the for-

mation of dissipative cellular dislocation structures almost presented in mechanically

or thermally stressed crystals (Fig. 5.18 3a and b). Even within cooling of as-grown
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crystals a strong dislocation dynamics takes place characterized by formation of glo-

bular cell arrangements. Such patterning requires in addition to the energetic non-

equilibrium the balance between elastic and plastic energy dissipation.

Generally, there are numerous publications on nonequilibrium thermodynamics in

material systems. However, according to the author’s knowledge, until now a special

handbook or even textbook on irreversible processes and dissipative structuring at

crystal growth and epitaxy is still missing. Of course, first of all this has to do with the

quasi-equilibrium conditions at growth of single crystals. Though, high-speed crystalli-

zation and epitaxial processes under high supersaturation are increasingly gaining sig-

nificance. They correspond rather to nonequilibrium thermodynamics. In this context

there is still a great deal of work ahead of us in order to develop a coherent theory on

dissipative structuring, especially in thin-film growth processes.
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6 Conclusions

We showed that thermodynamics is an important practical tool for crystal growth. It

belongs not only to the basic theoretical knowledge of each crystal grower but also

challenges its practical dexterity and clever modern mastering of process control and

automation. The general principle of thermodynamics acing at each crystal growth

process is the minimization of the free energy by returning from an excited situation

to a lower energy state. Applied to the crystallization process, this means that the sin-

gle crystalline state is a normal one because the thermodynamic potential of Gibbs of a

solid phase becomes minimum if its building blocks (atoms and molecules) are per-

fectly packed in a three-dimensionally ordered crystal structure, i.e., the atomic bonds

are saturated regularly. However, an ideally ordered crystalline state would imply a

too limited entropy. Thus, the minimization of Gibbs free energy is also proportionally

realized by an opposite directed force of increasing entropy causing certain disorder.

As a result, both effects of opposite drives decrease the free energy as it is expressed

mathematically by the equation of Gibbs G = HT – S. This dialectics will often meet at

crystallization accompanied by defect generation.

Thermodynamics is a macroscopic science and, therefore, of phenomenological

character only. It deals with average changes taking place among large numbers of

atoms or molecules. It shows solely macroscopic start and end states, phase relations,

tendencies, and directions but not the pathway in detail, as well as the microscopic

steps of atomic size during the building of a crystalline structure. The transition from

a fluid phase toward a crystalline state was discussed by the equilibrium treatment of

phase diagrams of single- and multicomponent material systems. Special attention

was given to the region of homogeneity of compounds and stoichiometry control, play-

ing a decisive role in high-quality crystal growth. The thermodynamic equilibrium seg-

regation coefficients for all phase transitions were derived.

The thermodynamics of surfaces, phase boundaries, and interfacial effects have

been demonstrated to be of increasing importance even for epitaxial processes, multi-

crystalline solidification, and the growth of nanocrystals. It was shown how faceting

influences the growth symmetry and meniscus stability when pulling from melt. In

epitaxy, the surface reconstruction can contribute to ordering effects in mixed semi-

conductor thin films. Surface energy minimization can evoke surface patterning appli-

cable in future nanostructuring.

Finally, we pointed out that the precondition for the crystallization of a stable

solid phase within a metastable fluid phase is the deviation from thermodynamic equi-

librium. We introduced the driving force of crystallization, which is required not only

for nucleation processes but also acts at each propagating fluid–solid interface by a

certain degree of supercooling or supersaturation.

At the end, nonequilibrium thermodynamics was introduced. Strictly speaking,

each crystal growth arrangement is a “thermodynamically open system”. Following
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the second law of thermodynamics, nonequilibrium processes lead to a positive en-

tropy production that never reaches zero as long as nonequilibrium is acting. Such a

situation can be described by the principles of nonequilibrium (irreversible) thermody-

namics, leading to the creation of dissipative structures. Although the standard crystal

growth processes are running quasi-near to the thermodynamic equilibrium, some

examples of typically stable nonequilibrium phenomena in bulk crystal growth, such

as convection-driven patterning in melts or the formation of cellular interfaces in al-

loys, have been shown. We emphasized how important the consideration of nonequi-

librium thermodynamics is during elastic energy dissipation in as-grown cooling crys-

tals, leading also to dislocation cell patterning.

In summary, thermodynamics helps to understand “why” the crystalline phase is

generated; however, the road of detailed atomistic steps leading to this, i.e., the “how”

can be answered by the research field of kinetics only – our following lecture part.
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